EDN
E U R O P E A N E D I T I O N

Special Project
Hands-on FPGA project—Part 2
pg 120

DESIGN FEATURES
Combine C, assembler to program DSP processors
pg 153
Ada and generic FFT generate routines tailored to your needs
pg 165

TECHNOLOGY UPDATES
Sensorless motor-control ICs
pg 43
Liquid-crystal displays
pg 61
Control-systems simulation software
pg 79

PROFESSIONAL ISSUES
Managing stress
pg 255
Expanded Design Ideas section
pg 171

Special Report
Pen computers: new electronic tools for the workplace pg 136
Developing a PC-based test system with standard hardware and software saves valuable development time and produces a higher quality system. That's why National Instruments hardware and software products are built upon industry standards.

Our GPIB boards use the NAT4882™ chip for complete IEEE-488.2 compatibility. And our LabWindows™ software combines powerful development tools with standard programming languages.

With LabWindows, you have the software tools you need to integrate all of the hardware in your test system. Use high-level 488.2 routines to simplify system programming or use drivers from the LabWindows Instrument Library to control your GPIB and VXI instruments without programming them at all.

LabWindows has tools for all phases of your development—data acquisition, analysis, and presentation. You can even create a graphical user interface so your test system is easy to operate.

To learn how to build a better test system, give us a call.
How to pick the right display for your design menu.

Touch panels for the toughest environments. They're just one way Dale® displays can help you design more efficient communication, operation, accessing or control — and get it to market on time.

Over the past decade, we've built a solid base in plasma panel technology by developing a versatile selection of segmented, dot matrix (character or fully populated) and bar graph designs.

But that's just the beginning. Our technically-superior, infrared touch panel lets you apply menu-driven design to a wide range of applications — even where high ambient light is present. And, to save you time (particularly where volume is limited) our systems engineers can package your touch panel as a complete system based on electroluminescent or nearly any other compatible display source.

If you get the idea that Dale display systems and people are flexible enough, and interested enough, to help you save time getting a project off the ground and into production — you're right.

Call (402) 563-6506 today or write Display Systems, Dale Electronics, Inc., 1122 23rd Street, Columbus, Nebraska 68601-3647.

Circle No. 1
106 MINUTES!

Order entry and customer service is provided by a friendly, competent staff, providing real-time stock status, online order entry, and instant information retrieval.

From order entry to shipping, the typical Digi-Key order is processed in just 106 minutes! This is why more than 99% of all orders are shipped within 24 hours.

Your order is inducted into Digi-Key's intelligent conveyor system utilizing state-of-the-art bar-coding and production technologies to achieve unparalleled speed and accuracy in order processing.

Fully supervised by Digi-Key's host computer, the conveyor's programmed logic controllers flawlessly route your order, selectively diverting it to each relevant picking zone.

Plus, more than 95% of the products in the Digi-Key catalog are available for "off-the-shelf" delivery. This gives you a level of performance that is unequalled among electronic component distributors. Call, write, or fax for your FREE CATALOG today.

Digi-Key CORPORATION
701 Brooks Avenue South
Thief River Falls, MN 56701
Toll-Free: 1-800-344-4539
FAX: 218-681-3380

Circle No. 2
Please write in reader service numbers not printed above.

--- PEEL ADDRESS LABEL OFF COVER AND AFFIX HERE ---

Name
Title
Company
Division-Mail Stop
Address
City
State
Zip
Country

Circle the numbers of products or ads on which you want more information.

281 282 283 284
291 292 293 294
301 302 303 304
311 312 313 314
321 322 323 324
331 332 333 334
341 342 343 344
351 352 353 354
361 362 363 364
371 372 373 374
381 382 383 384
391 392 393 394
401 402 403 404
411 412 413 414
421 422 423 424
431 432 433 434
441 442 443 444
451 452 453 454
461 462 463 464
471 472 473 474
481 482 483 484
491 492 493 494
501 502 503 504
511 512 513 514
521 522 523 524
531 532 533 534
541 542 543 544
551 552 553 554
561 562 563 564
571 572 573 574
581 582 583 584
591 592 593 594
601 602 603 604
611 612 613 614
621 622 623 624
631 632 633 634
641 642 643 644
651 652 653 654
661 662 663 664
671 672 673 674
681 682 683 684
691 692 693 694
701 702 703 704
711 712 713 714
721 722 723 724
731 732 733 734
741 742 743 744
751 752 753 754
761 762 763 764
771 772 773 774
781 782 783 784
791 792 793 794
801 802 803 804
811 812 813 814
821 822 823 824
831 832 833 834
841 842 843 844
851 852 853 854
861 862 863 864
871 872 873 874
881 882 883 884
891 892 893 894
901 902 903 904
911 912 913 914
921 922 923 924
931 932 933 934
941 942 943 944
951 952 953 954
961 962 963 964
971 972 973 974
981 982 983 984
991 992 993 994

--- PEEL ADDRESS LABEL OFF COVER AND AFFIX HERE ---

Name
Title
Company
Division-Mail Stop
Address
City
State
Zip
Country

Please write in reader service numbers not printed above.

--- PEEL ADDRESS LABEL OFF COVER AND AFFIX HERE ---

Name
Title
Company
Division-Mail Stop
Address
City
State
Zip
Country

Please write in reader service numbers not printed above.

--- PEEL ADDRESS LABEL OFF COVER AND AFFIX HERE ---

Name
Title
Company
Division-Mail Stop
Address
City
State
Zip
Country

Please write in reader service numbers not printed above.
COMPUTER CENTER
P.O. Box 9001
2130 DB HOOFDDORP, The Netherlands

EDN
POWER SPLITTERS/COMBINERS

the world's largest selection
2KHz to 8GHz from $495

With over 300 models, from 2-way to 48-way, 0°, 90° and 180°, a variety of pin and connector packages, 50 and 75 ohm, covering 2KHz to 8000MHz, Mini-Circuits offers the world's largest selection of off-the-shelf power splitter/combiners. So why compromise your systems design when you can select the power splitter/combiner that closely matches your specific package and frequency band requirements at lowest cost and with immediate delivery.

And we will handle your "special" needs, such as wider bandwidth, higher isolation, intermixed connectors, etc. courteously with rapid turnaround time.

Of course, all units come with our one-year guarantee. Unprecedented 4.5 sigma unit-to-unit repeatability also guaranteed, meaning units ordered today or next year will provide performance identical to those delivered last year.

finding new ways...
setting higher standards

Mini-Circuits

A Division of Scientific Components Corporation
P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500
Fax (718) 332-4661 Domestic and International Telexes: 6852844 or 620156

CIRCLE NO. 3
DIGITAL STEP ATTENUATORS

up to 35dB
10 to 1000MHz
FROM $5995

Finally...precision attenuation accurate over 10 to 1000MHz and -55°C to +100°C. Standard and custom models are available in the TOAT(pin)- and ZFAT(SMA)-series, each with 3 discrete attenuators switchable to provide 7 discrete and accurate attenuation levels.

The 50-ohm components perform with 6usec switching speed and can handle power levels typically to +15dBm. Rugged hermetically-sealed TO-8 units and SMA connector versions can withstand the strenuous shock, vibration, and temperature stresses of MIL requirements. TOAT pin models are priced at only $59.95 (1-9 qty); ZFAT SMA versions are $89.95 (1-9 qty).

Take advantage of this striking price/performance breakthrough to stimulate new applications as you implement present designs and plan future systems. All units are available for immediate delivery, with a one-yr. guarantee, and three-sigma unit-to-unit repeatability.

Price $ (1-9 qty) TOAT $59.95/ZFAT $89.95
bold faced values are individual elements in the units
EDN’s hands-on FPGA project

Part 1 of this 2-part hands-on project discussed the overall circuit and the schematic entry of this field-programmable-gate-array design project. Part 2 concentrates on the steps from simulation to the final functioning circuit. —Doug Conner, Technical Editor

Pen-based computing

Pen computers still have problems recognizing handwriting, but their ease of use and mobility make them suitable in situations where conventional computers just won’t do.—Gary Legg, Senior Technical Editor

Combine C and assembler to program powerful DSP processors

Implementing a digital-signal-processing algorithm on a powerful processor may seem intimidating, unless you approach the task in a methodical manner and with the correct tools.—Steve Denny and Stephen J Roome, Data Sciences

Ada and generic FFT generate routines tailored to your needs

Ada’s “instantiation” of generic packages—essentially generating application-specific code from templates by filling in parameters—makes customizing an FFT routine as easy as dimensioning an array.—Fred H Carlin, Consulting Engineer

Foldout contents

Turn to the last information-retrieval service card in the back of this magazine and you’ll find a foldout table of contents. Now, instead of flipping back and forth from this table of contents to the articles you want to read, you can have the convenient foldout open at all times while you’re reading EDN. Use the foldout contents to mark off articles you’d like your colleagues to read or to remind yourself to copy stories for your files.
POWER To Configure

MegaPAC™

Power: Up to 1200 Watts
Input: 110/220 VAC, strappable; 300 VDC
Outputs: 1 to 8 isolated and fully regulated, 2 to 95 VDC
Size: 11.8"L x 6.0"W x 3.4"H

Plug into instant power supply configurability with the new MegaPAC switcher from our Westcor division. MegaPAC outputs can be configured in virtually an infinite number of voltage and power combinations using up to 8 slide-in ModuPAC™ assemblies. Want to change a voltage or power level at your factory or at a customer site? No problem. Shut down input power, slide out the ModuPAC you want to replace and slide in the new one. It's that simple.

MegaPAC’s instant configurability takes Westcor’s popular StakPAC to the next level of customization and flexibility. And its improved manufacturability means a substantial price reduction too! At the heart of each plug-in ModuPAC is a standard Vicor VI-26X series DC-DC converter module...over 1 million are operating reliably in systems world-wide. With potential applications around the globe, MegaPAC is designed to meet stringent UL, CSA, and IEC safety standards (approvals in process).

So take the risk out of specifying your system power supply. Contact us today and request ordering information...then sit back and relax...your custom-tailored MegaPAC will be delivered within four weeks.

Call VICOR EXPRESS (800) 735-6200 for information and be sure to ask for a MegaPAC data sheet. Or call WESTCOR (division of Vicor) at (408) 395-7050. Fax us at (508) 475-6715 or (408) 395-1518.

VICOR Corporation
23 Frontage Road, Andover, MA 01810

Component Solutions For Your Power System
Sensorless motor-control ICs:
Spin chips whirl into nondrive applications

Spin chips use the back EMF of a brushless dc motor to control its speed, thus eliminating any need for the expensive Hall-effect sensors. However, these chips require new techniques for starting the motors they control.—J D Mosley, Technical Editor

Liquid-crystal displays: High-resolution panels target laptop computers

As the demand for elegant, high-performance displays increases, manufacturers are improving existing technologies and devising new ones. —Dave Pryce, Technical Editor

Control-system simulation:
Simulation software gains sophistication

Control-system simulation has come a long way since the seventies. State-of-the-art simulation packages are now refined enough to model the complexities of the real world.—John Gallant, Technical Editor

EDN Magazine offers Express Request, a convenient way to retrieve product information by phone. See the Reader Service Card in the front for details on how to use this free service.

Express Request

EDN Magazine Edition
APRIL 23, 1992
Continued from page 5

Technology Updates

Sensorless motor-control ICs: Spin chips whirl into nondrive applications

Spin chips use the back EMF of a brushless dc motor to control its speed, thus eliminating any need for the expensive Hall-effect sensors. However, these chips require new techniques for starting the motors they control.—J D Mosley, Technical Editor

Liquid-crystal displays: High-resolution panels target laptop computers

As the demand for elegant, high-performance displays increases, manufacturers are improving existing technologies and devising new ones. —Dave Pryce, Technical Editor

Control-system simulation:
Simulation software gains sophistication

Control-system simulation has come a long way since the seventies. State-of-the-art simulation packages are now refined enough to model the complexities of the real world.—John Gallant, Technical Editor

Product Updates

Analog IC for battery systems
16-Mbyte memory modules
Video codec chip set

Processor Updates

Windows-based μC programming tool
Multipurpose 4-bit μC
8051 μC for low-power applications

Continued on page 9

EDN April 23, 1992 • 7
TELEDYNE SOLID STATE HAS IT!

If your system requires I/O or power switching and you’re considering a discrete or hybrid circuit approach we should talk! And here’s why—

- We now offer an extensive “menu” of military/aerospace solid state relays for DC, bi-directional, and AC loads from low level to 25 Amps.
- Our latest designs feature “smart” options such as: output status for built-in test, short circuit protection and CMOS logic compatibility.
- All of our relays are designed and tested to MIL-R-28750 and applicable portions of MIL-STD-883, and most are qualified to existing MIL slash sheets or DESC drawings.
- We’ve already selected, derated, sourced, and qualified the required chip components, i.e., opto-couplers, drivers, FETs, SCRs, etc.

And if what you need is not in our catalog, call 1-800-284-7007, or FAX 1-213-779-9161. Chances are we’re already working on it.
Don't blame the kids

It's easy to blame US students for poor results on standardized tests. What's harder is setting performance guidelines for the people who teach our kids.
—Jon Titus, Editor

Managing stress for success

The bad news is engineers are subject to pressures most people never face. The good news is you can handle those pressures productively.—Jay Fraser, Associate Editor
FINALLY, One Company offers you the Power and the ease... with integrated Workstation tools from PADS...

PADS-View
- A complete design entry & simulation solution
- Mixed-Mode analog/digital simulator
- Multiple-windows featuring cross-probing of nets to/from PADS-2000 with waveform analysis
- Built-in analysis tools for Engineering Rules Check and Logic Simulation

PADS-2000/UX
- Interactive and automatic PCB design bundle with placement and auto-interactive/batch auto-routing tools
- Comprehensive SMT and analog design support with copper pour and edit
- Bi-directional interface to PADS-View supporting back-annotation and ECO’s

PADS-ForceRouter
- AutoRouting for High Density Design and Testability
- Gridless routing thru shape-based architecture
- Comprehensive high-speed design features with table-driven cross-talk analysis
- State-of-the-Art Design for Manufacturability

PADS offers hardware independent EDA Solutions within your budget and to meet your toughest engineering challenges. PADS products offer you a consistent, easy-to-learn, easy-to-use design environment. For database compatibility, total migration and a common design philosophy between PC’s and Workstations, call 1-800-554-SALES.

VIEWlogic
The Premiere Design Environment for ASIC, IC, and System Design
VIEWlogic and the VIEWlogic logo are registered trademarks of VIEWlogic, Inc.

PADS Software, Inc.
Tel: (508) 486-9521 Fax: (508) 486-8217
Toll Free: 1-800-554-SALES

CIRCLE NO. 7 See us at Electro Booth #1228

sun microsystems
The #1 Choice in Workstations: Sun SPARC Family of Products
SUN is registered trademark of Sun Microsystems, Inc.
SPARC is a registered trademark of SPARC International, Inc. developed by Sun.
Small computers, the components they comprise, and nonintuitive uses for all of these products constitute this issue's focus. Senior Technical Editor Gary Legg takes the holistic approach in his Special Report on pen-based computing by discussing entire computers. These small machines and their unique user interfaces may open many new computing markets.

As Gary writes, the intuitive appeal of pen-based computing is undeniable. People are used to writing on a surface with a pen. What's new is that the surface responds when it's part of a pen-based computer. How well the surface responds is another matter entirely. For a close look at the technology behind the response—handwriting recognition—see the Special Report's sidebar.

In addition to the pen interface, Gary also investigates the possible uses for lightweight, battery-powered, portable computers and postulates just how pervasive this technology might become.

Liquid-crystal displays are a key component of pen-based computers and are the topic of Technical Editor Dave Pryce's Technology Update. In particular, she reviews sensorless motor-control ICs. Sensorless motor control reduces costs and improves reliability by eliminating sensors from the motor assembly. However, these chips impose certain conditions on the motor start-up sequence, as J D discusses in her report. You'll find several suggested methods for satisfying these conditions in the article.

Last but certainly not least, this issue contains the second and last installment of Technical Editor Doug Conner's month-long hands-on FPGA series. In this article, Doug discusses his experiences with FPGA design verification and simulation. He also discusses how this project has transformed him from a skeptic into a firm believer in the benefits of simulation.

Steven H Leibson
Executive Editor
Soon, Eight Hours
Computing Will

AMD Introduces The World's First
386 Microprocessor With 3-Volt Technology.

Two standard dry-cell batteries. There's really nothing special about them. Aside from the fact that they can run a powerful, portable 386 computer for a full eight hours. Provided, of course, that portable is built around a low-voltage Am386™ microprocessor.

Thanks to the low-voltage Am386 microprocessors, laptop, palmtop and notebook computer designs will become smaller, lighter, and more powerful than ever before. With battery life of up to eight hours or more. That's a full day's worth of 386 performance—the per-
formance you need to run sophisticated applications like Windows™3.0.

And rest assured, the low-voltage Am386 microprocessors are proven compatible and comply fully with JEDEC standards for low-power, 3-volt computing. We can even supply you with the 3-volt EPROMs your systems will need. Other 3-volt system logic is also readily available.

For more information on the low-voltage Am386 microprocessors contact your local sales office, listed below. You'll never look at dry-cell batteries the same way again.

Advanced Micro Devices
"We're Not Your Competition."
ENGINEERING SEES OUR NEW 32-BIT INTEGRATED PROCESSOR.

Actually, a bullet doesn't do it justice. But you get the picture. Motorola's new 68330 integrated microprocessor is fast.

And well it should be. After all, it gets its firepower from a 68020-based core processor that's optimized to run on a 16-bit data bus. So you get 32-bit microprocessor performance with the economy of a 16-bit memory system.

As the simplest and lowest priced member of the 68300 family, the '330 is an ideal companion to your favorite peripheral circuits. Even if you've already combined them into an ASIC or custom circuit.

What's more, the 68330's Systems Integration Module comes already loaded with system glue logic. Saving you the trouble of designing in functions like clock

*Sample supplies are limited. Motorola and the ® are registered trademarks of Motorola, Inc. All brand and product names appearing in this ad are registered trademarks or trademarks of their respective holders.
So if you're looking for 32-bit performance at a 16-bit system price, call 1-800-845-MOTO. Ask for a free 68330 product sample, and discover a high-caliber value.

© 1991 Motorola Inc. All rights reserved.
If byte-wide DRAMS improve so many aspects of memory modules, why can't they improve the Economics of Modules?

[They can.]

Byte-wide DRAMS in memory modules. When you compare a 4-meg byte-wide with the normal combination of 1-megs and 256K's, you find that one chip can replace six. Now that in itself sounds pretty good. And it gives you lots of design advantages.

Far lower use of board real estate. Greater reliability. And what's critical for laptops—far lower power consumption.

But now byte-wides also give you an advantage in cost—on x36 modules like the 256Kx36 and 512Kx36. Because the single byte-wide costs less than the six chips it replaces.
Samsung byte-wides. You name it—they improve it.

<table>
<thead>
<tr>
<th>PART</th>
<th>ORG.</th>
<th>SPEEDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>KM418C256</td>
<td>356Kx16</td>
<td>70, 80, 100 ns</td>
</tr>
<tr>
<td>KM418C256</td>
<td>356Kx18</td>
<td>70, 80, 100 ns</td>
</tr>
<tr>
<td>KM48C512</td>
<td>512Kx8</td>
<td>70, 80, 100 ns</td>
</tr>
<tr>
<td>KM49C512</td>
<td>512Kx9</td>
<td>70, 80, 100 ns</td>
</tr>
</tbody>
</table>

*WPB AVAILABLE

And also because board assembly is less expensive.

So if you've been wishing you could exploit the design advantages of byte-wides but have been holding off for cost reasons, hold off no more—the future is here.

At Samsung, byte-wide technology lets you improve even the economics of modules.

For more information, please call 1-800-446-2760 today.

Or write to DRAM Marketing, Samsung Semiconductor Inc., 3655 No. First St., San Jose, CA 95134.
HP's 50 MBd Plastic Fiber-Optic Data Links. Anything else would be twisted.

Our new data links are so fast and cost-effective, it would be crazy to stick with twisted pair.

That's because our new links rely on plastic optical fiber cable which keeps costs way below glass fiber, while offering far greater voltage isolation and noise immunity than twisted pair wire.

A quick turn for the best.
With data rates soaring to 50 MBd, HP's plastic fiber links offer the fastest solution for designing computer, telecommunications, or industrial applications. So you can avoid bottlenecks, and design in data multiplexing.

Perfectly flexible.
You can choose interlocking horizontal or vertical mounts for greater mechanical design flexibility. The analog in/out provides the electrical design flexibility you need to meet your cost and performance goals.

The whole ball of wax.
What's more, as the largest opto-electronic supplier in the U.S., HP offers you the industry's most complete package of products and support services. To find out more about HP's 50 MBd Plastic Fiber-Optic Data Links, call 1 (800) 752-0900, ext. 2948 in the U.S.* You'd be crazy not to.

There is a better way.

*In Europe, FAX to: (49) 7031-14-1750.
Merger promises big signal-processing boost

Comlinear Corp and Electronic Decisions Inc have merged with the intent of bringing a new signal-processing technology called acoustic charge transport (ACT) to market. The resulting company keeps the Comlinear name. Electronic Decisions has spent nine years developing the ACT technology, mostly for military applications. ACT uses traveling acoustic waves in GaAs material to move charge packets across a chip's surface. Each packet contains an analog-signal sample so the ACT device spreads time-separated samples in space and effectively creates an analog sampling delay line or shift register. ACT is not a digital technology. Instead, it uses analog sampling that has a dynamic range of approximately 80 dB and introduces no sampling noise.

Electrode taps placed down the length of the ACT device can measure these spatially separated samples without disturbing them. The resulting readings combine through programmable attenuators to produce a weighted output. The net result is a programmable transversal or convolving filter with bandwidths ranging from 150 to more than 500 MHz. Electronic Decisions has operated prototype 128-tap ACT devices at sample rates ranging from several hundred MHz to more than 1 GHz. A DSP system performing the same function would have to perform roughly 50 billion operations/sec to perform comparable signal processing.

This technology has already proven useful for very-high-speed, signal-processing applications beyond the reach of DSP, but the company also plans to drive the cost of ACT devices down for use in high-volume applications. For now, only an $8,500 development kit is available. The first commercial parts will appear later this year. Comlinear Corp, Fort Collins, CO, (303) 226-0564.—Steven H Leibson

Software demystifies system needs

If you have a specific data-acquisition application but aren’t sure how to implement it, your computer can now give you that information. A free interactive program called DAQ Designer asks you about your application’s analog and digital signals, the type and number of sensors, and any signal-conditioning requirements. The program then analyzes your answers and recommends specific plug-in, data-acquisition boards, signal-conditioning products, cable assemblies, and software packages that will suit your application. The program requires a computer running DOS 3.0 or higher with a minimum 80286 µP, at least 640 kbytes of RAM, and a VGA monitor. National Instruments, Austin, TX, (800) 433-3488; (512) 794-0100. Contact Jerry Rodriguez.

—J D Mosley

DSP boards pack unusual I/O ability

Even though DSP coprocessor boards for the 16-bit ISA bus are common, the DT3801 series of TMS-320C40-based boards are noteworthy. These boards use all of the 320C40’s I/O facilities: six communications ports and a 6-channel DMA. The units also include large amounts of memory. As a result, the boards can perform many I/O operations simultaneously and with little impact on the host PC. The DT3809, which has a 12-bit ADC, can take 1 Msamples/sec on one channel, 800 ksamples/sec on 16 single-ended or eight differential channels at unity gain, or 320 ksamples/sec on its multiple channels at software-selectable gains of 2, 4, and 8. The DT-3808, which has an 8-channel simultaneous S/H capability, makes 160,000 16-bit A/D conversions/sec. The boards also include two 200k-point/sec, 16-bit DACs and have 4 Mbytes of dynamic RAM, 512 kbytes of static RAM (SRAM), 256 bytes of non-volatile SRAM, and 8 kbytes of configuration RAM. The volatile memory is organized in 32-bit words. The board design allows adding still more memory on daughter boards or additional ISA bus boards.

Prices range from $7195 to $7595. A developers’ software kit costs $2995, and an emulator for the DSP costs $8000. Data Translation Inc, Marlboro, MA, (508) 481-3700.

—Dan Strassberg

Software converts FPGAs to ASICs

If you design with programmable logic from Actel, Altera, or Xilinx, you can use Gould AMI’s Netrans software to convert your design to a masked gate array. The software provides the netlist translation from the FPGA to the company’s netlist format, including libraries, design syntax, and test-vector conversions. The company’s design-optimization tools also analyze your design for potential ASIC design flaws and ensure test-vector compatibility with the company’s in-house production testers. The software runs on Sun-4 workstations with CAE software from Cadence, Dazix, Mentor Graphics, and Viewlogic. The cost is $15,000 for support of one FPGA vendor and $5000 to add additional FPGA vendors. Gould AMI, Pocatello, ID, (208) 233-4690.—Doug Conner
Low-power 486 chip fits 386SL sockets

You can drop 486 power into 386SLX sockets to boost processing power for laptops and other low-power applications with Cyrix Corp.'s Cx486SLC. The device is the first 3V, 25-MHz, 486-compatible µP. It lets users or vendors upgrade their systems by substituting an existing 386SL with the chip. According to the company's benchmarks, the µP is 2.5 times faster than 386SX-25 and 386SL-25 chips, delivering a Landmark (version 2) rating of 78 MHz. The company also claims it is 1.7 times faster than the IBM 386SLC chip.

The µP is code compatible with the 486. However, it is not a copy of the 486 design. It supports a 1-kbyte unified cache (2-way set associative), rather than the 8 kbytes of the 486's unified cache. The chip has a 16-bit external memory bus, instead of the 486's 32-bit bus. Additionally, the Cyrix part has a 16-bit multiply that supports 386 graphics applications, such as Pen-based systems. Operating at 5V, chip power dissipation is typically 2W. That figure drops to less than 0.5W when operating between 2.7 and 3.3V.

The company is developing other versions of the 486 to replace the 386. Expected are faster 16-bit versions, including 33- and 40-MHz parts. The µP comes in a 100-lead quad flatpack. Initial pricing is $119 (1000); sample qty available. Cyrix Corp, Richardson, TX, (214) 234-1234, FAX (214) 699-9857.—Ray Weiss

Try your ASIC before you buy it

If you know from the start you need a mask-programmed ASIC, not a field-programmable gate array (FPGA), you probably don't want to go through the task of designing an FPGA and then later translating the design to an ASIC. But an FPGA lets you validate your design before you risk time and money on a gate array. Now you can have it both ways.

Gould AMI's Netrans plus service takes an ASIC design and translates it into an FPGA so you can validate the design quickly and inexpensively before committing to the ASIC's nonrecurring engineering costs. The difference in going from an ASIC to an FPGA instead of the other way around is significant: You design to take advantage of the ASIC structure, not the FPGA. You'll avoid design inefficiencies that sometimes occur in an FPGA to ASIC conversion. The FPGA may sacrifice some performance because the design isn't optimized for it, but the ASIC will have superior performance and reach completion faster than translating from an FPGA.

The company translates the netlist typically in two days and ships it back to the customer for FPGA prototyping and testing. As soon as the design has been verified by the customer, ASIC samples are available in an average of three weeks. Initially, the software will convert into Actel FPGAs. Translation for a 1000- to 2000-gate design costs $4000. Gould AMI, Pocatello, ID, (208) 233-4690.—Doug Conner

12-bit, fast monolithic ADCs arrive

The SPT7912 from Signal Processing Technologies is the first monolithic 12-bit A/D converter capable of sampling 30 Msamples/sec. As a result, a 500-kHz input results in a S/N ratio of 67 dB. The converter also includes on-chip track-and-hold circuitry. At $250 (100), this IC's price is significantly less than that of comparable hybrid and board-level converters, which sell for $500 to $1000. The chip also comes in a 10-Msample/sec version, the SPT7910, which sells for $150 (100). Both chips include ECL-and TTL-compatible versions and power dissipation under 1.4W. These ICs suit high-resolution, high sample-rate applications such as digital communications, radar receivers, biomedical electronics, portable instruments, and professional video equipment. Signal Processing Technologies, Colorado Springs, CO, (719) 540-3999, FAX (719) 540-3970.—J D Mosley

IGBT announcements follow settlement

Now that a patent infringement suit with International Rectifier Corp (El Segundo, CA) is settled, Harris Semiconductor is adding new types of IGBTs (insulated-gate bipolar transistors) to its existing line. Size of the devices have built-in anti-parallel rectifier diodes, breakdown ratings from 400 to 600V, and can carry collector currents from 6 to 24A at 90°C. The built-in rectifier of these devices is a very fast recovery type, which has a reverse-recovery time of 60 nsec at the device's rated collector current. Prices for the devices range from $8.89 for the HGTG24N60D1D, which is a 24A/600V device with a 96A peak current rating, to $1.49 for the HGTP6N50E1D, a 6A/500V device. Characterization data, which includes maximum operating frequency for a range of current and switching losses, is available for all six IGBTs. Three additional IGBTs are rated for higher continuous-current/breakdown-voltage combinations of 34A/
Scorching access times and a wide range of densities make our SRAMs untouchable. 12 ns 256Ks; 8 ns 64Ks; 4 ns 16Ks and more.

At 70 MHz, with read/write clocks and synchronous flag features, our FIFOs and Bi-FIFOs move data in and out quickly.

Let 'em just try to keep up with the hottest SPARC multiprocessing concept going.

The fastest access in every PROM density. Broad options make these hard to beat.

PLDs allow crafty designers to mix Gate Array density with 40 MHz performance; even support 125 MHz state machines.

Just when you thought the board was full, multichip modules slip 1 MB SRAMs into a 1/8" space.

PLAY HARDBALL WITH THE COMPETITION.

Call today for your free copy of the Cypress 1992 CMOS/BiCMOS Data Book. Get the handbook that's jammed full of the semiconductors you need to create winning product line-ups. Then, smoke the competition.

FREE 1992 DATA BOOK HOTLINE: 1-800-858-1810*.
Ask for Dept. C44.
Software cuts 15% off ASIC NRE costs

Gould AMI says its Access software tools help you slip your ASIC design into production smoothly. To back up that claim, the company is offering a 15% reduction in nonrecurring engineering (NRE) charges for customers who run the software and produce optimized test-compatible designs. The $5000 software helps designers avoid ASIC design flaws and test pattern incompatibility with the company’s production testers. Gould AMI, Pocatello, ID, (208) 233-4690.—Doug Conner

Companies jointly develop local desktop bus

Digital Equipment Corp and Signetics have jointly developed a local desktop bus, called Access Bus. The companies developed the bus specification around the Signetics I²C (Inter-Integrated Circuit) bus. DEC uses the bus in its DECstation 5000 entry-level workstations to interconnect desktop peripherals. The bus can interconnect low-bandwidth peripherals, such as a mouse, keyboard, or joy stick, and specialized peripherals, like digitizers, tablets, modems, printers, and image scanners. Using the bus eliminates the need for specialized I/O cards. Rather, the bus provides a simple plug-and-play mechanism for desktop devices.

The bus links as many as 14 devices. It uses a 4-pin shielded modular connector with a 2-wire (serial and clock lines) bus for interconnection, with a 78.5-kbit/sec transfer rate. The hardware base for the bus is in place; the I²C bus is a common peripheral on Signetics 8051 microcontrollers and is available on more than 120 integrated circuit components. The bus is an open standard, with no licenses or royalties required.

Computer Access Technology Corp is the first vendor to develop a product for the bus, via a joint development and marketing relationship with Signetics. The company’s first product will be a bus controller board for PC/AT buses. Due in September, the board will provide a desktop bus for peripherals. The company will also provide a consulting service for computer and peripheral vendors. Computer Access Technology, Sunnyvale, CA, (408) 732-8910; Digital Equipment Corp, Andover, MA, (508) 689-1000; Signetics, Sunnyvale, CA, (408) 991-2000.

—Ray Weiss

Chip makes pc-board traces programmable

Next week Aptix Corp will introduce a RAM-based field-programmable interconnect device that can make a resistive connection between any two of its nearly 1000 I/O pins. At the same time, the company will be announcing prototype boards incorporating these parts and several associated CAE tools. These products will force you to rethink the way you build prototype hardware. For more information, see EDN News Edition’s April 30 issue and the May 7 issue of EDN magazine. Aptix Corp, San Jose, CA, (408) 428-6200, FAX (408) 944-0646.—Steven H Leibson

Cut prototyping costs with infrared sensor kit

Elf Atochem Sensors’ $99 infrared sensor kit lets you experiment with passive infrared-detection technology and save time in prototype development. The hardware package includes two boards—an LED module with voltage regulator and 9V battery clip, and a detector module with Fresnel-lens, amplifier/filter, comparator, sensitivity adjustment, and 9V battery clip. You can modify the boards to trigger mechanisms such as timers and pulse counters. The kit comes with application notes, a schematic of the detector’s low-power circuit, articles on polymer infrared applications, and several design tips. Elf Atochem Sensors, Valley Forge, PA, (215) 666-3500. Contact Ed Tom.—J D Mosley

Tool kit eases fax/data-modem product development

Putting together products based on DSP technologies has become easier with a modem tool kit from Analog Devices Inc. The ADAT-DS101 “datapump” tool kit furnishes relocatable object code for data-modem and fax-modem algorithms. The code supports V.32bis, V.32, V.22bis, V.22, and other modem standards, as well as Group-3 fax standards V.17, V.29, V.27ter, and V.21. The algorithms receive and transmit data in full-duplex mode at data rates from 300 to 14,400 bps. The tool kit requires you to use the company’s AD20msp501 and AD20msp502 fax/data-modem chip sets. The $1500 tool kit includes the software, documentation, and a license. For designers who want additional software, a complete modem-design kit is available from Digi-com Systems. The kit supplies code for modem control, error correction, and data compression. Digi-com also supplies a test board that includes the
The Next World Standard for Embedded Systems

IDT's R3051 RISCcontroller™

MIPS® RISC for $30

The 32-bit R3051™ outperforms the i960 and AMD29K, and has everything you need in a high-performance, low-cost CPU:

- **Larger Cache** — up to 10KBytes of I and D cache on-chip for PostScript®, networking, or X protocols.
- **4-Deep Read and Write Buffers** — allow the CPU to run at full speed, even in low-cost DRAM designs.
- **Multi-Sourcing** — provides form, fit, and function interchangeable products at competitive prices.
- **Development Support** — 100% software compatible with low-cost MIPS and IDT development tools on PC, SPARC, MIPS, and Macintosh® host platforms.
- **In Production Now!**

“We selected the R3051 for its outstanding performance at remarkably low cost,”

John Wakerly
Vice President of Engineering
Alantec, Leader in internetworking systems

Evaluate the R3051 Today

For a limited time, we're offering a complete R3051 Evaluation Kit, including an evaluation board and software, for $595 (an $895 value).

Call our toll-free hotline to get an IDT RISC Product Roadmap and complete information on the R3051 Evaluation Kit, so you can evaluate the next µP standard for embedded systems today.

(800) 345-7015 • FAX: 408-492-8674
ASK FOR KIT CODE 5071

Integrated Device Technology, Inc.

CIRCLE NO. 18

EDN April 23, 1992 • 23
DSP chip, RAM, and a direct-access arrangement circuit.

Analog is taking the tool-kit approach with other suppliers that will provide algorithms for image and speech compression and speech recognition. In addition to Digicon, the company has signed up Lernout and Hauspie Speech Products (Ypres, Belgium) for libraries bolster analog and mixed-signal ASICs

New libraries and macrocells available as part of Harris Semiconductor's Fastrack ASIC design system enhance the system's analog and mixed-signal designs. The HDI4000 200V bipolar, dielectrically isolated, device-level library suits telecommunications, high-voltage switching, and power-control applications. Specific circuit applications include subscriber-line interfaces, high-voltage preamplifiers, high-current-amplifier output stages, and analog switches with high standoff voltage and low current. The HDI4000 library features fully complementary, bipolar devices capable of operating at breakdown voltages ranging from 80 to 200V. Resistors, MOS capacitors, JFETs, and zener diodes are all available. Typical \(f_{\text{sat}} \) are 300 MHz for npn and 80 MHz for pnp transistors.

In addition to this new library, the company has added user-modifiable hard-coded macrocell functions to its 20 and 40V device-level libraries. The company created these macrocell libraries, the HDI1000HC and HDI2000HC, from its 20 and 40V tile arrays, respectively. The macrocells are more compact than those contained within the tile arrays, but users can modify the hard-coded cells for specific design requirements. Each library consists of 26 and 22 analog hard-coded cells, respectively. These cells include op amps, comparators, S/H functions, voltage references, mixers, and multipliers. These two libraries are available as part of the Analog Fastrack design system, for which nonrecurring engineering (NRE) costs begin at $60,000.

The company has also announced a July debut of a BiCMOS cell library for high-integration, mixed-signal ASICs. The HBC1000 library will combine complementary-bipolar analog, sampled-data CMOS for switched-capacitor networks, and high-speed and high-density logic. The initial release will include a variety of functions, including a set of core amplifier cells, a programmable amplifier, a switch family, a 5-\(\mu \)sec ADC, and sampled-data filter macros. This library is available as part of Mixed Signal Fastrack. Typical NRE cost involving the mixed-signal library is $145,000. Harris Semiconductor, Melbourne, FL, (800) 442-7747.

—Anne Watson Swager

Software tools estimate packaging performance

When simulating your high-speed ASIC, don't forget the effect your package has on performance. Two software tools released at Nepcon in Anaheim, CA, in late February by Ansoft Corp can help predict transmission-line effects on lead frames and packaging. The ParICs physical IC modeler release 2.8 accepts 2-D leadframe designs in several CAD formats and automatically generates 3-D models. It also has modeling for standard DIP and surface-mount packages. The company's Maxwell 3-D field simulator release 1.2 accepts the ParIC models and calculates the package's capacitance and inductance. The field simulator can also handle magnetic components, connectors, through-holes, vias, and gull-wing leads. The modeler runs on DOS-based computers and Sun workstations; prices begin at $10,495, depending on platform and options. The field simulator runs on Sun, HP, Apollo, and IBM workstations. An annual license for the simulator is $18,000; a perpetual license is $45,000. Ansoft Corp, Pittsburgh, PA, (412) 261-3200.

—Jon Titus

Disk-drive chip set is user configurable

Disk-drive designers can now get a chip set that blends a stock part's cost and availability with the flexibility of a custom part. Micro Linear's 3-chip set includes the ML4610 disk-head amplifier ($2 (100,000)), the ML6006 36-Mbps read-channel filter and equalizer ($6), and the FC3560 read-channel chip. The amplifier and filter ICs are both stock parts; the read-channel chip is a semicustom IC based on an analog tile array. The device includes a pulse detector, four gated servo peak detectors, a bandgap reference, a frequency synthesizer, and oscillators as analog building blocks. It also offers an 800-gate digital gate array. You customize the device by connecting blocks with the metal layers. You can receive your initial IC within eight weeks; subsequent revisions take four weeks. The customized device's price varies with package type and number of blocks used, but a preconfigured version, the ML6010, sells for $7 (100,000). Contact Pam Gopalan, Micro Linear Corp, San Jose, CA, (408) 433-5200.

—Richard A Quinnell
There's a very good reason why the machine shown here is called NeXTstation™ Turbo. Its speed. Incredible speed, thanks to NeXT's decision to upgrade to Motorola's lightning-fast 33MHz 040 processor. NeXT was determined to design a machine that offers both speed and an unprecedented number of system features at an affordable price, and they did it. With system solutions from Motorola, an industry leader in advanced ASIC.

The 33MHz 040 processor is only one of the Motorola contributions that turned NeXT's vision into reality. Among the essentials NeXT wanted for the NeXTstation Turbo was super-fast memory transfer, so they chose Motorola's CMOS ASIC for their NeXT-designed VLSI chips. The result is the Turbo Memory Controller (TMC), capable of supporting up to 128MB of fast, interleaved RAM, with prefetching.

The NeXTstation Turbo also boasts a Peripheral Controller (PC) which NeXT designed with Motorola's CMOS ASIC technology, enabling the Turbo system DMA architecture to offload I/O functions for maximum system output - a NeXT key objective. And still another benefit NeXT gained by using Motorola high-density CMOS gate arrays is JTAG Scan Design, which allows utilization of Motorola Mustang™ ATPG software to achieve a dramatic reduction in design cycle time.

In designing the NeXTstation Turbo, NeXT's primary goal was to be able to offer customers the most machine for the least money. Working with Motorola, they achieved it. Indeed, the NeXTstation Turbo offers state-of-the-art solutions that come from good old fashioned teamwork.

© 1992 NeXT, the NeXT logo and NeXTstation are trademarks of NeXT Computer, Inc.
Mustang is a trademark of Motorola, Inc.
Motorola and (A) are registered trademarks of Motorola Inc.

MOTOROLA. THE NeXT™ CHOICE.
dc to 3GHz from $11.45

lowpass, highpass, bandpass

- less than 1dB insertion loss
- greater than 40dB stopband rejection
- surface-mount
- BNC, Type N, SMA available
- 5-section, 30dB/octave rolloff
- VSWR less than 1.7 (typ)
- rugged hermetically-sealed pin models
- constant phase
- meets MIL-STD-202 tests
- over 100 off-the-shelf models
- immediate delivery

low pass, Plug-in, dc to 1200MHz

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Passband MHz</th>
<th>Stopband MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLP-5</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PLP-10.7</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PLP-21.4</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PLP-30</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PLP-48</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PLP-70</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PLP-90</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PLP-100</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PLP-200</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Passband MHz</th>
<th>Stopband MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIP-25</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PIP-50</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PIP-100</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PIP-150</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PIP-21.4</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PIP-30</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PIP-48</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PIP-70</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PIP-90</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PIP-100</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PIP-200</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
</tbody>
</table>

Surface-mount, dc to 570MHz

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Passband MHz</th>
<th>Stopband MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCLF-21.4</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>SCLF-30</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>SCLF-135</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
</tbody>
</table>

Flat Time Delay, dc to 1870MHz

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Stopband MHz</th>
<th>Passband MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHP-25</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PHP-50</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PHP-100</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PHP-150</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PHP-21.4</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PHP-30</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PHP-48</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PHP-70</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PHP-90</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PHP-100</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PHP-200</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
</tbody>
</table>

Bandpass, Elliptic Response, 10.7 to 70MHz

<table>
<thead>
<tr>
<th>Center Freq (MHz)</th>
<th>Passband MHz</th>
<th>Stopband MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIR-10.7 10.7</td>
<td>25-35</td>
<td>1.3-150</td>
</tr>
<tr>
<td>PIR-21.4 21.4</td>
<td>50-60</td>
<td>2.5-150</td>
</tr>
<tr>
<td>PIR-30 30</td>
<td>75-80</td>
<td>3.5-150</td>
</tr>
<tr>
<td>PIR-40 40</td>
<td>100-110</td>
<td>4.5-150</td>
</tr>
<tr>
<td>PIR-50 50</td>
<td>125-135</td>
<td>5.5-150</td>
</tr>
</tbody>
</table>

Price, (1-9 qty), all models: plug-in $14.95, BNC $36.95, SMA $38.95, Type N $39.95

NOTE: A: -933 and -1870 only with connectors, at additional $2 above other connector models.

high pass, Plug-in, 27.5 to 2200MHz

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Stopband MHz</th>
<th>Passband MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHP-25</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PHP-50</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PHP-100</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PHP-150</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PHP-21.4</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PHP-30</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PHP-48</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PHP-70</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PHP-90</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PHP-100</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
<tr>
<td>PHP-200</td>
<td>< 1dB</td>
<td>> 20dB</td>
</tr>
</tbody>
</table>

Bandpass, Elliptic Response, 10.7 to 70MHz

<table>
<thead>
<tr>
<th>Center Freq (MHz)</th>
<th>Passband MHz</th>
<th>Stopband MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIB-10.7 10.7</td>
<td>25-35</td>
<td>1.3-150</td>
</tr>
<tr>
<td>PIB-21.4 21.4</td>
<td>50-60</td>
<td>2.5-150</td>
</tr>
<tr>
<td>PIB-30 30</td>
<td>75-80</td>
<td>3.5-150</td>
</tr>
<tr>
<td>PIB-40 40</td>
<td>100-110</td>
<td>4.5-150</td>
</tr>
<tr>
<td>PIB-50 50</td>
<td>125-135</td>
<td>5.5-150</td>
</tr>
</tbody>
</table>

Price, (1-9 qty), all models: plug-in $14.95, BNC $36.95, SMA $38.95, Type N $39.95

finding new ways, setting higher standards

Mini-Circuits

P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661

Distribution Centers / NORTH AMERICA 800-654-7949 • 417-335-5935 Fax 417-335-5945
EUROPE 44-252-630694 Fax 44-252-630710

CIRCLE NO. 19

F132-2 REV. A
High-Speed 7.5ns CMOS PAL Devices.

There's nothing we hate more than delays. That's why we developed high-speed CMOS PAL devices that no one can beat—our CMOS 7.5ns 16V8H-7 and 10ns 22V10H-10 PAL devices.

In fact, nobody even comes close to our in-system performance, with the fastest set-up and clock-to-out times available. Both come in PLCC and DIP varieties. All on state-of-the-art submicron EE CMOS.

High-Volume, High-Speed Delivery.

Again, there's nothing we hate more than delays. You can get huge volumes of our new CMOS PAL devices now.

And they're on the shelf at your local dis-
No Delays.

Because at AMD, we don't believe in long delays either.

Advanced Micro Devices

901 Thompson Place, P.O. Box 3453, Sunnyvale, CA 94088 © 1991 Advanced Micro Devices, Inc.

PAL is a registered trademark of Advanced Micro Devices. All brand or product names mentioned are trademarks or registered trademarks of their respective holders.

International Sales Offices: Antwerp (03) 248 43 00; Frankfurt area (06121) 24061; Hong Kong 86 54 525; London area (0483) 740440; Manchester area (0253) 775100; Milano (02) 3533241; Munich (089) 23324; Osaka (06) 243-3290; Oslo area (02) 353324; Paris (1) 49 75 10 10; Seoul (02) 784-7598; Singapore (65) 348 1188; Stockholm (08) 986180; Taipei (02) 715-3536; Tokyo (03) 3346 7590.

CIRCLE NO. 20

EDN April 23, 1992 • 29
From Boolean Equations to OrCAD’s Programmable Logic Design Tools. It took more than 100 years, but it was worth the wait.

Sure, George Boole pioneered the description of logic in the 19th century. And for the last 30 years, Boolean Equations were just about the only way engineers working with programmable chips could express their designs.

But that’s all a thing of the past. Now there’s OrCAD’s Programmable Logic Design Tools, the most versatile PLD tools set yet. With seven different ways to describe logic, OrCAD gives you more flexibility and more freedom than you ever imagined.

Besides describing logic in conventional Boolean equations, you can now use OrCAD’s own indexed equations and condense pages of Boolean lines into one or two lines of code. Or work with truth tables, state machine procedures, and logic synthesis like streams and numeric mapping. You can even compile logic from schematic symbols generated in OrCAD’s Schematic Design Tools.

The advances OrCAD would make in describing logic.

Release IV. Or choose as many different forms as you like all within one design. Programmable Logic Design Tools recognizes the logic requirements of your design and compiles it into the most efficient JEDEC or HEX files possible.

Yes, George Boole deserves credit! His equations first allowed us to describe logic. But now there’s a better way. The most advanced way yet. OrCAD’s Programmable Logic Design Tools.

Call today for a FREE DEMO DISK and information kit.

OrCAD
3175 N.W. Alolele Drive
Hillsboro, Oregon 97124
(503) 690-9881 (Sales)
(503) 690-9891 (Fax)
Concerning the fastest state/timing acquisition card

I would like to set the record straight regarding logic-analyzer acquisition speeds. An EDN News Break (February 17, 1992, pg 24) contained a Hewlett-Packard claim that the 16550 card is now the fastest state/timing acquisition card on the market. This is not true. The Paladin card from American Arium exceeds the HP acquisition-speed specification by exactly two times in both state (200 MHz) and timing (1 GHz), and the memory depth is significantly deeper (128 kilibits/channel). Paladin plugs into the ML4400 logic-analyzer mainframe.

Jeff T Acampora
Director, Sales & Marketing
American Arium
Tustin, CA

A baudy affair

The letter (EDN, August 19, 1991, pg 33) from Chris Rogers, an engineer at SCI Technology in Huntsville, AL, discussing the correct use of bits per second (bps) and baud, has stirred up a veritable fire storm. The editorial response, penned by EDN Technical Editor, Chris Terry, was printed unsigned. Among the comments we have received were letters from Gerald Edelman, a senior scientist at ITT Aerospace and Communications Div in Nutley, NJ; John H Humphrey, a general partner at Telequality Assoc, in Golden CO; and P F Gascoyne of West Hanney, UK. Other comments appeared in the EDN BBS's Soapbox special-interest group.

Chris Rogers's letter, our reply, and all of the communications we have received agree on one point: Speakers and writers are wrong to use baud when they mean bps—a common mistake. Nevertheless, there were several errors in our Ed Note. The most serious was our statement that with the V.29 quadrature-amplitude-modulation (QAM) scheme used in 9600-bps facsimile and leased-line modems, the communications channel transmits 600 baud. In fact, from the definition of baud, a V.29 modem transmits 2400 baud.

The correct definition of baud is the number of symbols/sec transmitted over a communications channel. V.29 QAM manipulates both the amplitude and phase of the carrier so that a symbol can represent any 1 of 16 values. In other words, each symbol represents four bits of data—$2^4 = 16$. If you divide 9600 bps by 4 bits/symbol, you get 2400 symbols/sec or 2400 baud.

Because amplitude and relative-phase measurements don't depend on a signal's instantaneous polarity, each cycle of a modem's carrier frequency can transmit two symbols—one in each half cycle. Therefore, to transmit 9600 bps with 4 bits/symbol, the carrier frequency must be at least 1200 Hz. In fact, in V.29, the carrier frequency is about 50% higher, a value still well within a dial-up voice-grade line's normal bandwidth of 250 to 3250 Hz.

You might infer from this channel bandwidth and from the fact that you can send two symbols per cycle, that a dial-up voice-grade line could support transmission at 6000 baud. In fact, though, reader Gascoyne points to textbook proofs showing that the theoretical maximum on a 3-kHz line is in the neighborhood of 3000 baud. Moreover, before the advent of adaptive line equalization, the practical maximum was 1200 baud.

Apparently, if you try to send more than 3000 symbols/sec on a 3-kHz-bandwidth line, the signal bandwidth extends so far beyond the band edge that even adaptive equalization can't compensate for the line's attenuation and phase shift. With a normal level of line noise, the result is an unacceptable error rate.

A BBS caller objected to the way we used the term, PSTN (public switched telephone network) in the article, “ISDN-based concurrent design” (EDN, March 1, 1991, pg 80) that prompted all the correspondence on baud vs bps. This objection appears to be unfounded. As far as we know, even though ISDN (integrated-services digital network) services are now utilized by public switched dial-up networks, the PSTN acronym predates ISDN. PSTN refers to channels whose characteristics are based on those of the older analog network.

Reader Humphrey took reader Rogers to task for subtracting the overhead of asynchronous communication when he determined the rate of information transfer over a 9600-bps channel. Humphrey points out that asynchronous modems offer synchronous-communication options that do away with most of the overhead. Moreover, depending on the redundancy of the data, modems that include data-compression firmware can sometimes transmit at data rates higher than the 57.6 kbps often quoted for ISDN channels. Humphrey objects to using data rates to compare PSTN and ISDN channels. Such arguments, he observes, fail to acknowledge the tremendous investment in the existing telephone network.

Dan Strassberg,
Technical Editor
EDN Magazine
Newton, MA

Shuffling royalties robs small recording artists

Concerning Steve Leibson's editorial, “Buy this and you're a thief” (EDN, November 7, 1991, pg 55), I'd like to add an angle he didn't mention.

In addition to being an electrical engineer, I'm also a musician who has a small recording studio. If Congress approves the bill that will add royalty fees to digital-audio-tape recorders and blank tapes, then I'll be paying royalties to other people for my own original works!
Now, who's the thief? I may never produce something that generates royalties that I'll collect, but I can still dream, can't I? Something rubs me the wrong way when a well-established artist like Michael Jackson gets richer from my personal creativity merely because I choose to record my work on the highest quality medium available to me.

I consider these proposed royalties to be anticompetitive. Now that technology has given small studios and even the average home recording artist the means to compete against the big boys, the recording industry is running scared and is trying to shut us down and keep us out of the race.

Bill Fox
Pataskala, OH

Correction
EDN's VXI Source Guide (October 10, 1991, pg 73) listed an incorrect address, phone number, and FAX number for Giordano Associates. The firm has moved; the updated information is Giordano Associates Inc 5 Century Dr Parsippany, NJ 07054 Phone (201) 292-0079 FAX (201) 292-9416

The value of a sense of humor
It was with great delight that we here at Togai Infralogic read Jon Titus's commentary, "You've got to have fun (EDN, February 3, 1992, pg 33). As Mr Titus so aptly points out, having fun and learning to laugh and make light of certain situations does indeed help one keep things in perspective. Working in the engineering community often forces one to conform and pay utmost attention to detail. As such, there can be little room for light-hearted and carefree thinking. Having a sense of humor is critical to the success of so much that we do, and you have reaffirmed this quite nicely.

Many of the great thinkers of our time and before have been able to achieve their goals by maintaining balance and wit. Becoming an adult does not mean losing sight of the creative and imaginative—these [qualities] are what keep us young at heart and keep us going! Einstein, Edison, and Avogadro exemplify the gift of humor and its payoffs.

Camerone A Welch, Director
Corporate Communications
Togai Infralogic Inc
Irvine, CA

Reader finds PLDs are too costly to use
Charles Small's editorial (EDN, October 10, 1991, pg 49) on PLDs was right on the money! I have always felt that it cost too much to get involved in the process for a small company. I would love to get into this field to design some chips for our company, but being a small company, it is just not cost effective. Let's see some movement by the producers of this logic to get us involved. They will make their profit on the sale of even more chips when the rest of us can get in.

Ed Osborne
Vibrac Corp
Penacook, NH

HAVE YOUR SAY
EDN's Signals & Noise column provides a forum for readers to express their opinions on issues raised in the magazine's articles or on any topic that affects the engineering industry. Send your letters to Signals & Noise Editor, EDN Magazine, 275 Washington St, Newton, MA 02158. You can also send a note via MCI mail at EDNBOS or use EDN's bulletin-board system at (617) 558-4241: From the Main System Menu, enter SS/SOAPBOX, then W to write us a letter. You'll need a 9600-bps (or less) modem and a communications program set for 8,N,1.
WHO HAS GIVEN TV MAKERS LESS TO WORK WITH?
In the beginning there was the valve.

Then the valve gave way to the discrete semiconductor. Which, in turn, was superseded by the first integrated circuit.

Now Philips has taken TV component integration to its logical conclusion, with the development of the first true one-chip solution.

It means the integration of all practical functions – FM sound, chroma-trap, luminance and synchronization processing for example – onto a single chip. The number of peripherals can then be cut by at least 50%, eliminating virtually all factory adjustments.

One-chip TV is just one example of Philips' ability to produce innovative solutions to practical problems.

THE COMPANY THAT'S PACKED MORE TV FUNCTIONS ONTO A SINGLE CHIP.

An approach that extends to our complete range of semiconductors: transistors and diodes; power semiconductors; sensors and hybrid ICs; dedicated ICs for consumer, communication and control applications; industry-standard ICs (logic, linear and programmable) and microcontrollers.

In the future we look forward to offering our customers yet more. Even if it sometimes means offering them less.
To ensure your company's positive performance in today's keenly competitive marketplace, start with advanced materials and resources available from the engineering plastics leader.

Get the precise combinations of properties you need from the industry's broadest and deepest selection of resin chemistries, copolymers, alloys and composites. Optimize product design and development with hands-on assistance and proprietary programs like our unique Engineering Design Database.

Enhance productivity and cost-efficiency with the significant process advances in progress at our massive Polymer Processing Development Center. Profit by GE Plastics' worldwide presence and market expertise.

NOVA Biomedical did, for their advanced Nucleus™ blood analyzer. **Materials:** Lexan® resin, foamable Prevec® resin, Cycolac® ABS resin. **Resources:** Design reviews; material, tooling and process selection. **Results:** Creative design with increased functionality and parts consolidation; reduced assembly and finishing for significant savings in cost.

Partnership product development—only from GE. For more information, call: (800) 845-0600.

CIRCLE NO. 27

GE Plastics

® Registered Trademarks of GE.
™ Trademark of NOVA Biomedical.
the world's largest selection
500Hz to 5GHz from $249

Over 200 off-the-shelf models, from low-cost rugged industrial to Hi-Rel military/space approved types, with LO power level requirements from -4dBm to +27dBm. We offer this wide variety of models, up to 5GHz, to allow you to select exactly what you need... pin, surface-mount, TO-8, flatpack, and connector package types, the specific frequency range your design involves, the optimum LO drive level, and a host of special types.

And, exclusively from Mini-Circuits, ULTRA-REL™ mixers with a five-year guarantee and specification limits held to 4.5 sigma for unprecedented unit-to-unit repeatability.

Choose mixers with low LO drive, low noise, load insensitive, quadrature mixer/modulators, plus a large number of MIL-mixer types tested to MIL-M-28837/A, and TX screened.

For the most comprehensive computer characterization of mixers (isolation, conversion loss, intermod, and VSWR vs frequency), call or write your closest Mini-Circuits' rep or distributor or our office for a free copy of our RF-IF Signal Processing Handbook, Vol. 1/2.
DARE TO COMPARE!

Compare our new SBX-C186EB to ANY Single Board Computer on ANY bus. Our new Powerful, Expandable, Inexpensive, Easy to Program Single Board Computer was designed to eliminate expensive and complicated Bus systems. All of the basic functions needed for most embedded applications are on-board. Additional I/O expansion is provided by four on-board iSBX ports which may be used to accommodate any of the iSBX modules currently available.

<table>
<thead>
<tr>
<th>HARDWARE FEATURES</th>
<th>SOFTWARE FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 16-Bit 80C186eb Up To 16 MHz</td>
<td>* On-Board FLASH EPROM Programming</td>
</tr>
<tr>
<td>* On-Board 80C187 Co-Processor</td>
<td>* Borland Turbo C++ Fully Supported</td>
</tr>
<tr>
<td>* 8570 Real Time Clock</td>
<td>* Borland Turbo Debugger Supported</td>
</tr>
<tr>
<td>* Four 8/16-Bit iSBX Expansion Ports</td>
<td>* I/O Driver Library Provided Free</td>
</tr>
<tr>
<td>* Watch Dog Timer And Power Fail Detect</td>
<td>* Demo Programs Provided Free</td>
</tr>
<tr>
<td>* Two Serial Ports (RS-232/422/485)</td>
<td>* No Software Royalties</td>
</tr>
<tr>
<td>* 10 Year Lithium Battery For RTC And RAM</td>
<td>* No DOS Required</td>
</tr>
<tr>
<td>* Up To 512K Of EPROM/FLASH EPROM</td>
<td></td>
</tr>
<tr>
<td>* Up To 512K Of Battery Backed Static RAM</td>
<td></td>
</tr>
<tr>
<td>* 32 Parallel I/O Lines With Open-Collectors</td>
<td></td>
</tr>
<tr>
<td>* Five 16-Bit Interrupt Timers</td>
<td></td>
</tr>
<tr>
<td>* Program Controlled Dip-Switch And LED's</td>
<td></td>
</tr>
<tr>
<td>* Available In -40 to +85 C Temperature Range</td>
<td></td>
</tr>
</tbody>
</table>

Turbo C++ and Turbo Debugger may be trademarks of Borland, DOS is a trademark of IBM, iSBX is a trademark of Intel

| QTY (1) | $425 |
| QTY (100) | $319 |

EXCLUDING OPTIONS

R.L.C. Enterprises

4800 Templeton Road Atascadero, CA 93422 Phone (805) 466-9717 FAX (805) 466-9736
Don’t blame the kids

Here in the US, we’ve read stories about how poorly our students have done on standardized tests when compared with students in other countries. Educators, politicians, and parents are clamoring for more money, more homework, longer school years, and longer school days. Kids, they say, just aren’t learning what they’re supposed to. They’re spending too much time watching television and fooling around. Blaming the kids is easy.

The answer isn’t so simple. It’s surprising that, as part of the solution to the current education “crisis,” no one is calling for enforcing minimum performance standards for teachers, administrators, and book suppliers. It would be interesting to compare the tests from teachers in Japan, Germany, and the US. How do US educators compare with their colleagues overseas? After all, it’s these people who are supposed to mold our kids’ education.

Teachers are the key to a solid educational structure. Yet we don’t test that structure for its soundness, and we demand little—if any—accountability. Likewise, it’s the knowledge that teachers have and how they impart it to their students that makes all the difference. It’s often surprising what teachers teach. For example, I had one teacher tell me that no nuclear weapons were used in World War II. It is not the teachers alone who are at fault. Recently, the Wall Street Journal listed many errors in high-school history books. A review panel of noneducators found more than 5200 other errors while examining less than two dozen history texts.

So what’s a parent to do? Start by asking your children what they’re learning, and ask them to explain it. Don’t ignore the opportunity to meet with teachers during school open houses. Don’t hesitate to question teachers about what your children are learning, and about how the teachers are teaching it. Read your kids’ textbooks—even one chapter is a start. Sit in on a class. Press for uniform teacher testing and minimum standards.

If you’re brave, take on the issue of tenure for public-school teachers. The issue isn’t how tenure protects “academic freedom,” but how it protects lifetime employment. Dumping tenure for public-school teachers is worth the fight. Without giving school boards the ability to fire poor teachers, testing teachers only identifies the problems, it doesn’t remove them. Academic freedom is important, and we should protect it, but we shouldn’t use it as an excuse for protecting poor teachers who deny students a good education. It’s time to empower school boards to test teachers and to throw out the poor ones.
A Complete Graphics System
Back-end on a Single Chip

The new Video Interface Palette TLC34075 is a complete graphics system back-end on a single chip that interfaces directly to a Video Controller and VRAM memory! It comprises a colour palette, VGA passthrough, video overlay, pixel datapath control logic, high speed timing logic and direct interface to Video RAM. Working with virtually any video controller/architecture in a wide range of applications, it replaces up to 30 chips giving you substantial cost savings, easy design-in, greater reliability and flexibility, and a fast time to market.

Highly Integrated, Adaptable, Expandable And... Available NOW!

It's wide range of pixel multiplexing options and 4 speed versions mean that your design can cater for different colour depths and screen resolutions just by adding memory and plugging in a faster version of the TLC34075. And it's available right now in 4 speed versions, 66MHz, 85MHz, 110MHz and 135MHz.

Circle the number below for your free application book and data manual.

CIRCLE NO. 186

Texas Instruments
Spin chips use the back EMF of a brushless dc motor to control its speed, thus eliminating any need for the expensive Hall-effect sensors normally used to adjust commutation. Although this increased integration implies simpler designs, these chips require new techniques for starting the motors they control.

The benefits presented by emerging technologies inevitably host an assortment of new design challenges, and motor-control technology is no exception. As disk-drive form factors shrink to 2.5 and 1.8 in., the motors that power those drives and the circuits that control the motors have similarly dwindled in size. In fact, much of the control circuitry for these tiny motors is now available as a single IC, often referred to as a spin chip.

The sensorless and brushless dc motors that you can control with spin chips have applications beyond the disk-drive market in automotive and consumer electronics. Fans, VCRs, process controllers, robotics, and an assortment of toys are just a few of the logical targets for these motors.

The appeal of dc motors lies in the elimination of mechanical commutators and brushes. Without the specters of arcing and brush wear, these motors offer high efficiency and rapid acceleration for high-speed operation. However, most of these motors use magnetoresistive Hall-effect sensors to replace the mechanical commutators that previously provided rotor positioning. These Hall-effect sensors reduce a motor's MTBF, and therefore its reliability, because they require additional control-signal wires and connectors within the motor.

Hall-effect sensors also introduce increased sensitivity to temperature variations, RFI, and circuit noise. And because these sensors are built into the motor, the motor's size, cost, and power consumption also increase. Furthermore, even a small error in positioning a Hall sensor within a motor can diminish the motor's drive performance.

Although using spin chips helps avoid...
Increased density has challenged our engineers for quite some time.

More capability in less space. That's our goal. At Precision Interconnect we pursue it every day for the world's leading electronic equipment manufacturers. Working with strict mechanical and electrical requirements, we design and produce complete interconnect systems. We manufacture microminiature cables with conductors as small as 42 AWG and terminate them to our standard line of Micro-D and linear strip connectors with .050" (1.27mm) centerline spacing. Custom and nano strip connectors with .025" (6.4mm) spacing can also be assembled. When applications require even more density, multiple flexing, or protection from harsh environments, we incorporate specific features to meet those needs.

Our expertise, increasing with each unique problem we solve, ensures that all critical components of your interconnect system are designed in, built in, and tested. And that system will be as compact and reliable as possible. Because at PI, space has always been a precious commodity.

Just give us a call.
problems incurred by using Hall-effect sensors, you face new problems when starting the motor. Spin chips control a motor’s speed by monitoring the motor’s back EMF in order to determine how to vary the current in the motor windings. The set of voltages being applied to a motor’s three terminals indicates the commutation state.

Changes in back EMF dictate the application of drive voltage and the switching of commutation states. When the back EMF approaches the applied voltage, the motor speed approaches a maximum steady-state value. The six output-state combinations provided by a typical spin chip are illustrated in Fig 1.

However, at start up, there is no back EMF being generated by the motor for the control chip to reference. Accordingly, the start-up logic developed by the various IC manufacturers frequently differentiates the spin chips that are currently available.

That sounds logical

Some of these ICs require the control of an external μP to initiate motor rotation. The SSI32M595

<table>
<thead>
<tr>
<th>Table 1—Sensorless motor-control ICs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
</tr>
<tr>
<td>Allegro</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cherry</td>
</tr>
<tr>
<td>Harris</td>
</tr>
<tr>
<td>Hitachi</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Micro Linear</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Philips/</td>
</tr>
<tr>
<td>Signetics</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SGS-Thomson</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Silicon Systems</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Unitrode</td>
</tr>
</tbody>
</table>
SENSORLESS MOTOR-CONTROL ICs

from Silicon Systems is an example of such an IC. The μP must generate a stream of pulses to advance the motor at start-up, but usually within one revolution the motor has attained sufficient speed for the IC’s back-EMF sense logic to detect the motion. At that point, the μP’s function is complete and the control IC spins the motor up to speed and regulates commutation.

Other ICs don’t need μP support to initiate motor rotations. For example, the TDA5140A spin chip from Philips and Signetics has three commutation circuits to handle the three possible start-up states of a motor and to avoid initial motor oscillations that can occur with other less sophisticated control ICs.

The TDA5140A uses a start-up oscillator to generate a pulse that sets the IC’s motor-drive outputs to the next state. If the motor rotates forward and generates sufficient back EMF for the IC to detect a zero crossing within a time period equal to 30° of the energizing cycle, then the commutation-delay circuit that normally controls motor speed brings the motor up to speed. Fig 2 illustrates the normal commutation phases in a motor’s windings.

To prevent the IC from mistaking a flyback pulse for a true zero crossing of the back EMF, this spin chip inhibits acknowledgment of any zero crossing for a time period defined by an external timing capacitor. A flyback pulse results whenever one of the chip’s outputs switches off, which happens immediately prior to a back-EMF period.

This control IC also provides for two other start-up states. If the motor starts up by rotating in reverse, a phase-error commutation circuit detects the incorrect EMF phase and prevents further reverse rotation. And if the motor stalls when the IC applies a start-up pulse, the IC will torque the motor to the next state with a second pulse from the start-up oscillator.

To keep the motor rotating, the control IC has to compensate for any variation in the commutation delay that occurs between the zero crossing point and the point at which the IC energizes the motor. This delay is greatest when the motor first begins to accelerate, but each state commutation provides another burst of current to accelerate the motor. As the time between the zero crossings decreases, the commutation delay also decreases until either the motor reaches its peak speed or the control IC assumes its regulatory tasks.

Adaptive commutation is the method by which control ICs deal with inconsistent commutation delays. Although adaptive commutation techniques vary, most manufacturers use two external capacitors that charge and discharge to reflect the time between zero crossings.

One method uses each capacitor alternately to measure and divide successive crossings. Another method uses the initial charging capacitor (CAP-CD) to measure and divide the time between zero crossings and the initial discharging capacitor (CAP-DC) to store the commutation delay interval.

Cherry Semiconductor’s CS5143 spin chip implements adaptive commutation using the second method. To obtain a device that clearly illustrates the motor’s activity during commutation, you can call the company and request an adaptive commutation wheel. This wheel is actually a tool that presents winding states and polarity changes as an 8-pole, 9-coil, 3-phase, dc spindle motor rotates in 15° increments.

Fig 1—Spin chips offer six possible output states to energize motor coils. The directional arrows indicate current flow through the windings. Each zero crossing point is indicated as a centerpoint on the back-EMF slopes of the three voltage waveforms. Notice the flyback pulse that occurs when each IC output switches off.

Fig 2—Sensorless motor-control ICs from Silicon Systems and Philips and Signetics' TDA5140A spin chip offer six possible output states to energize motor coils.
Changing the Signal Processing World Forever.

ZAP! Sometimes the best ideas come suddenly. With one great flash of insight, the problem is illuminated and quickly solved. Provided, of course, you are working with SPROC™ signal processing technology from STAR Semiconductor.

Before SPROC, many bright ideas produced little more than a flash of light and wasted energy. And you probably seen more than one enlightened solution bogged down in the time-consuming prototyping of an analog board or the agonizing handcoding of a DSP chip.

Now SPROC can help you transform your bright ideas into brilliant signal processing solutions in a flash. By integrating an advanced, programmable signal processing chip and a powerful, easy-to-use development system, SPROC technology allows you to create and modify an application in a matter of minutes... without writing code.

How? The SPROClab™ development system uses the unique “Sketch and Realize” design approach to allow rapid transformation of signal processing designs from signal flow block diagrams. SPROClab automatically converts your diagrams into code optimized for the SPROC chip, which contains multiple on-chip processors for real-time signal processing performance.

To learn more about the new SPROC technology, specially-designed to handle the needs of real-time signal processing, call for your free 350-page DataBook and demonstration disk.

(908) 647-9400.

25 Independence Boulevard, Warren, NJ 07059

A Flash of Brilliance.
SENSORLESS MOTOR-CONTROL ICs

Once the motor reaches the desired speed, the control IC needs to apply current to each motor winding when back EMF is strongest in order to generate maximum torque for maximum energy efficiency. PLL circuits provide one way to synchronize commutation that is unaffected by motor and load conditions. SGS-Thomson's L6238 spin chip uses a digital PLL to sample back EMF from the floating, unenergized motor winding to determine when to advance or delay commutation.

To accommodate a range of motor speeds, once during each revolution the PLL can accept a reference frequency to which it will lock the motor. For disk-drive applications, you can achieve master/slave synchronization among multiple drives by making a disk-feedback signal of the reference frequency for all of the drives.

You will also want to consider whether the control IC uses PWM or a linear signal to control the motor's speed. PWM is the more energy-efficient technique, which is an important consideration for portable applications. However linear speed control introduces less noise into the circuit, which reduces the chance of introducing unwanted errors in disk-drive applications. Micro Linear's ML4411 spin chip provides both linear and PWM current-control circuits so that you can switch from one type of speed control to the other as your application performs different functions.

Stop in the nick of time

Eventually you will need to make the motor stop, and the braking method offered for any given spin chip may affect your design. Hitachi's HA13508S uses an active braking scheme that shorts the motor's windings to stop its rotation. In contrast, Allegro's 8902 actually delays the motor's stopping action...
Motor Drives
don’t have to be a Headache!

It’s 5:00 p.m. and your boss tells you he needs a new universal 3-phase motor control design that operates in a 28Vdc or 270Vdc system with 15A-20A of drive current. It has to be a high-performance, continuous drive that’s small and light weight. Then he needs it in half the time of your last rush project. Now you have a headache. What do you do?

Call DDC and let us show you our complete family of standard motor drive products. Whatever your system requirements, DDC has a drive hybrid to fit the application.

Look at our selection chart, then choose the PWR-82331. With 30A of continuous current and 200V breakdown, it can meet both drive and derating requirements. The PWR-82331 is also a high-performance drive with an internal dc-dc converter for continuous high-side drive. It requires only 6.3 square inches of mounting space, offers a thermal resistance of -55°C/watt, and operates from -55°C to +125°C.

Take a second look at our selection chart, and that same system can be operated at 270Vdc with our PWR-82333 motor drive. This pin-for-pin, form fit, and function replacement, offers all the same features of the PWR-82331 with 500V breakdown capability to meet the demands of the latest 270V systems.

It doesn’t matter what type of drive you need, DDC can customize one of our already existing products to meet your needs. From 5A to 30A, 28V to 270V, printed circuit board or chassis mount DDC can satisfy your requirement.

For information call Bob Fryer at 516-567-5600 ext. 390. We have the cure for your motor drive headache!
The conductive-plastic LWG is specially designed to work hard in rigorous mechanical testing applications. It features an actuating rod so coupled to the wiper contact that play is eliminated, enhancing accuracy and operating life. The transducer can be mounted by its twin spherical bearings over swivelling pivot heads with an angle of movement of up to ±30°, reducing side load errors to zero.

The LWG features standard linearity to ±0.05%, resolution better than 0.01mm, and an operating life of 100 x 10^6 operations @ -30°C to +100°C, 5 to 2000 Hz vibration. The series is available in seven electrical stroke lengths between 150 and 750mm.

For Novotechnik’s full-line catalog of transducers, sensors and potentiometers call or write:

Novotechnik U.S. Inc.
Transducers
237 Cedar Hill Street
Marlborough, MA 01752
Telephone: (508) 485-2244
Fax: (508) 485-2430
As the demand for elegant, high-performance displays increases, manufacturers are improving existing technologies and devising new ones.

The burgeoning market for large, high-resolution LCDs is driven by the demands of avionics and medical instrumentation and—most of all—the nearly insatiable appetite of laptop- and notebook-computer manufacturers. These applications require dot-matrix displays that can provide considerable amounts of information. Notebook computers, for example, typically use LCDs that provide VGA-standard resolutions of 640 x 480 pixels. Avionics and medical displays typically require resolutions of tens of thousands of pixels.

Although electroluminescent and gas-plasma displays compete with LCDs in high-resolution flat-panel applications (Ref 1), the LCD is rapidly becoming the dominant technology because of its intrinsic advantages. LCDs are thin, lightweight, rugged, and—except for backlighting—operate at low power.

From the simple twisted-nematic display, manufacturers have progressed to modern LCD fabrication technologies such as supertwist; double, monochrome, and film supertwist; and active matrix. (For an in-depth look at these technologies, see Ref 2.) These technologies have greatly improved the contrast and viewing angle of LCDs. The improvements, together with advanced backlighting techniques, are further strengthening the LCD's position as the flat panel of choice for large-area high-resolution displays.

Companies are devising other new technologies in addition to advanced fabrication technologies. One company, In Focus Systems, is using active addressing to drive passive LCDs. Active addressing would let passive supertwist-nematic LCDs achieve the speeds video applications require. The same company is also trying a subtractive process to achieve color LCDs. The company says this process yields brighter, higher-contrast images than does the prevalent additive process. Another company, Tektronix, is developing an active-matrix technology it calls plasma-addressed liquid crystal (PALC). PALC panels provide effective gray-scale performance at video rates and have the potential to be manufactured in large sizes.

The majority of LCDs used in laptop and notebook computers are passive-
True portables are totally off the wall.

No outlets. No rechargers. No reliance on AC whatsoever. That's true portability. It's what the world is coming to. And it runs on easy-to-replace primary batteries. The next generation promises even smaller, lighter weight, more convenient portables. That depends on you, and you can depend on us.

Duracell is the primary source for primary power. We offer you a world of technical expertise and marketing experience in developing powerful solutions for computers, cellular phones and more. Let us help you select a primary battery system from our broad line that includes alkaline and high power lithium manganese dioxide batteries.

Call us for application-specific data, design-in assistance, or just more information. Our OEM hotline number is (800) 544-5454, Ext. 3281. Or fax us at (203) 791-3273.

True portability is the cutting edge. And it's in your power.

DURACELL®
PORTABILITY IS PRIMARY
LIQUID-CRYSTAL DISPLAYS

matrix displays. In these displays, the drive and control circuitry directly drive the rows and columns of pixels that make up the dot matrix. Although not perfect, passive-matrix LCD panels provide bright, high-contrast, high-resolution images in either black and white or color. Passive-matrix displays have the advantage of relatively low cost, which contributes greatly to their popularity.

Compared with passive displays, active-matrix displays offer the advantages of faster response times and higher contrast and brightness. In an active-matrix display (Fig 1), each pixel is driven by its own thin-film transistor, usually an FET made from amorphous silicon. The row and column drivers address the individual transistors to turn the pixels on or off. Although the interface circuitry for this type of display is multiplexed, an individual thin-film transistor statically drives each pixel. This arrangement preserves the simplicity of multiplexing and minimizes the resolution-contrast tradeoff associated with most passive LCD technologies.

Active-matrix LCDs can achieve video-speed response times of less than 50 msec, brightness levels that often exceed 50 cd/m², and contrast ratios of 40:1 or higher. Despite such impressive performance, active-matrix LCDs suffer from a cost penalty that takes them out of the mass market. Thin-film transistor (TFT) active-matrix displays require a minimum of eight masks to produce what is analogous to a huge integrated circuit. The low yields and slow throughput for large-area TFT displays result in production costs that mandate OEM prices of about $2000 for a typical 9-in. display. Such prices eliminate these displays from the mass market, which uses passive displays that sell for well under $500 in OEM quantities.

Speed, brightness, and contrast

Speed—Depending on construction, displays vary greatly in their ability to respond to input signals. Passive displays such as TN, STN, and DSTN types exhibit a slower response than do active-matrix displays, which use thin-film transistors to control the action of the individual pixels.

Speed requirements depend on your application. For text applications on a PC, response times of 250 to 500 msec are usually satisfactory. However, if you use a mouse to drag a cursor across the screen, you'll need a response of about 175 msec to prevent smearing. For animation, an even faster response of 125 msec is desirable. For real-time video applications, a response time of 50 msec or less is mandatory. Thus far, the only liquid-crystal displays capable of video-speed response are active matrix types, which exhibit speeds in the 30- to 50-msec range.

Brightness—High-resolution displays come in a wide range of brightness levels, depending on the LCD’s construction and type of backlight. Brightness is usually measured in foot lamberts or candelas/square meter (1 ft = 3.425 cd/m²; cd/m² = 0.292 ft). A brightness of 25 cd/m² is usually adequate for most environments. Some active-matrix TFT displays exhibit a brightness as high as 60 to 80 cd/m².

Contrast—Essentially, the ratio of the on-pixel to off-pixel brightness. In high-resolution displays, contrast ratios range from about 10:1 to as high as 100:1. Although the way the human eye perceives contrast depends on several factors, ratios of 7:1 or higher are adequate in most cases. Above a ratio of 20:1, the eye perceives little difference.
LIQUID-CRYSTAL DISPLAYS

To reduce costs and simplify construction, some manufacturers have tried using various types of diodes instead of transistors in an active-matrix display, but with less than optimal results. Although a diode-matrix display requires fewer masks and is usually simpler to address, its color saturation, contrast, and speed are not as good as those of a TFT display. Until TFT displays come closer to the $500 barrier, manufacturers of mass-market laptop and notebook computers will continue to rely on the more-than-adequate passive displays.

Today's state-of-the-art passive displays use technologies that take performance levels beyond those possible in a simple twisted-nematic (TN) display. At the very least, modern displays employ supertwist technology (STN), and most employ advanced technologies such as double supertwist (DSTN), film supertwist (FSTN), or monochrome supertwist (MSTN). For an explanation of the various technologies, see box "LCD alphabet soup."

Companies such as Epson, Hitachi, Sharp, and Toshiba all offer LCD panels that use variations of these technologies to produce dis-

LCD alphabet soup

As with most technologies, the terms that describe liquid-crystal displays include a plethora of acronyms that can be confusing to first-time readers. **Nematic (N),** which is common to most of the acronyms, denotes a threadlike structure—the typical shape of a liquid-crystal molecule. The following list defines and describes several of the most commonly encountered acronyms:

Active matrix (AM)—A type of display that contains a matrix of active elements to control the on-off state of each pixel. A few active-matrix displays use 2-terminal diodes as the active elements, but most use 3-terminal thin-film transistors to form the matrix. See TFT description.

Double-supertwist nematic (DSTN)—Similar to the supertwist LCD, a DSTN display obtains nearly twice the contrast by adding a color-compensating glass cell layer to provide an almost pure black-and-white image. The main disadvantage of a double-supertwist display is its need for a high-power backlight to compensate for transmission losses the added layer causes. The additional glass cell also increases the cost of the display.

Film-supertwist nematic (FSTN)—Similar to a double-supertwist display except for the replacement of one of the optical-compensating glass layers with an ultrathin polymer film. Compared with a double-supertwist display, a film-supertwist LCD has slightly less contrast but offers the advantages of a wider viewing angle and a lower-power backlight.

Monochrome-supertwist nematic (MSTN)—The monochrome-supertwist display replaces the expensive compensator cell of the double-supertwist LCD with an optical retarder made from a less expensive polymer material. Basically identical to the film-supertwist display in construction and characteristics, an MSTN LCD features a high-contrast black-and-white image and a wide viewing angle.

Supertwist nematic (STN)—A liquid-crystal display that rotates the plane of polarization between 180° and 270°. A simple twisted-nematic display imposes a 90° twist on the plane of polarized light passing through the display. In addition, an alignment layer in a supertwist display provides a pre-tilt of 10° to 20°. The pre-tilt and increased twist give supertwist LCDs contrast ratios as high as 10:1 and viewing angles as wide as 40°. Despite these advantages, many people find the characteristic blue tinge of a supertwist display unacceptable.

Thin-film transistor (TFT)—A display that incorporates an active matrix of thin-film transistors to control the turn-on and turn-off of each pixel. These expensive, state-of-the-art displays typically have a viewing angle of 45°, a contrast ratio greater than 40:1, and response times as fast as 40 msec. By including red, blue, and green filters, a thin-film-transistor LCD can reproduce bright, high-contrast color images.

Twisted nematic (TN)—The basic liquid-crystal display in which the material imposes a 90° rotation, or twist, to the plane of polarized light passing through the display. Conventional twisted-nematic LCDs typically exhibit a contrast ratio of 3:1 and a viewing angle of less than 20°.

In addition to these acronyms, there are others that are peculiar to certain manufacturers. For example, Epson uses the terms FTN for film-compensated STN displays and NTN for neutralized STN displays, the latter being similar to a double-supertwist display. In Focus Systems uses the term TSTN for its triple STN displays. In this case, the T for "triple" does not apply to the amount of twist but to the number of separate LCDs used in the display. No doubt other companies have—or will—generate their own acronyms to add to the confusion.
Discovering Innovative Solutions. Enhancing Your Expertise

For designers working with advanced Digital Signal Processing, Multiprocessing or parallel processing, using TMS320C30/C40 processors, TI in collaboration with its distributors, present this in-depth Design Seminar. Hear from the experts about the latest design tools and product developments in these specialised fields to give your designs that competitive edge.

You will find there is a valuable insight and update to be gained by both the new processor user and experienced designer alike.

To receive your registration documents, simply call your local distributor or complete the attached coupon.

Please complete the coupon and mail to: Texas Instruments, FREEPOST, Blackhorse Road, London, Great Britain SE8 5XX or telephone the relevant distributor.

Register Today!
Please register me for the Advanced DSP & Parallel Processing Seminar.

Date ________________________________

Location ________________________________

□ I am unable to attend, please keep me informed of future DSP developments.

FIRST NAME: __
SURNAME: ___
TITLE: ___
COMPANY: __
ADDRESS: ___
CITY: ___
POSTCODE: ___
COUNTRY: __
TEL: __
SPRE02-EDN/PAR
LIQUID-CRYSTAL DISPLAYS

Displays that feature a pure black-and-white image. Desirably bereft of the color-fringing effects of the simpler supertwist technology, these advanced displays also exhibit superior contrast and brightness. Color displays also benefit from these improvements in the basic black-and-white image.

The widely accepted approach to obtaining color from an LCD is to concentrate first on a good black-and-white image, and then add red, green, and blue filters to form an additive color system. Most companies use this approach to make their color supertwisted-nematic or active-matrix displays. Taking the opposite approach, In Focus Systems stacks magenta, cyan, and yellow cells to exploit the inherent birefringence (coloration) of an image, using a subtractive color process much like that used in photography. The company says the subtractive process yields brighter, higher-contrast images than does the additive process.

In Focus Systems is also working on an active-addressing scheme for passive displays that will provide the video-speed performance of active-matrix displays. Manufacturers can attain video-speed supertwist-nematic displays by using thin cell gaps and low-viscosity liquid-crystal mixtures. However, the brightness and contrast ratio of these displays are unacceptably low compared with standard, slower-responding supertwist-nematic panels. An effect known as frame response is responsible for this poor performance. Frame response is an unwanted optical transient introduced by the liquid crystal when it responds to the large row-select pulse generated by the multiplexed LCD drive instead of to the desired rms value of the pixel waveform.

Fig 2 illustrates the difference between (a) the standard 1/240-msec multiplexed addressing waveform,
Performance Integrated MIPS Module

40-MHz PIMM

The easiest & lowest cost path to 33 MIPS and 6.5 MFlops* with 5,000,000 Transistors inside a Single VLSI Package

*Double Precision LINPACK

Contains MIPS RISC CPU, Floating Point Accelerator, Write, Read & Parity Buffer, 32KB Instruction & 32KB Data Caches

Easy to Design-In

Designers no longer have to contend with the high-speed cache bus or other high-frequency signals because they are integrated in PIMM's VLSI package.

PIMM also provides a fully flexible and simple interface that helps designers to build high performance workstations, servers, and embedded systems.

Single Package with Minimum Board Space

PIMM integrates a CPU, FPA, 32KB I & 32KB D caches, 8-word-deep write buffer, and a 32-word programmable read buffer in a 2-inch square package — thereby reducing board space and cost dramatically.

Full MIPS Software Support

Mature compilers and operating systems exercised on hundreds of thousands of production systems by dozens of manufacturers over three years.

For more information call

U.S.A. (408) 734-9000
Europe 44-256-59585

PERFORMANCE SEMICONDUCTOR CORPORATION
610 East Weddell Drive, Sunnyvale, California 94089

CIRCLE NO. 41
LIQUID-CRYSTAL DISPLAYS

which has a large row-select pulse, and (b) the 1/240-multiplexed pixel waveform used in active addressing. Both graphs show one 16.7-msec frame period. The rms voltage of Fig 2a is identical to that of the standard LCD drive waveform of Fig 2b. In effect, active addressing replaces the once-per-frame pulse with smaller, more-constant row pulses. Because less time elapses between pulses, the pixel On states do not decay as rapidly and the display's brightness and contrast ratio have the same high values as those of a standard, slower-responding supertwist-nematic panel.

Although standard products are not yet available, In Focus Systems has used active addressing in a 240 x 240-pixel supertwist-nematic prototype display that exhibits bright, high-contrast images at video rates. Active addressing requires a sophisticated algorithm that allows the simultaneous driving of multiple rows and columns to provide exact control over any pixel without loss of contrast. One of the keys to producing commercial active-addressing products is reducing the software algorithm to silicon as part of the driver circuitry.

Tektronix is looking into an active-matrix technology it calls plasma-addressed liquid crystal (PALC). Using this technique, the company has built a 5 x 5-in. display containing 90,000 pixels arranged in a 300 x 300 array. Progressively scanned lines are addressed at 35 kHz and updated at 67 Hz. The panel provides gray-scale performance at video rates. According to Tektronix, PALC advantages include reduced row-driver count, a low column-driver capacitive load, a wide operating voltage range, and the potential for manufacture in large sizes.

As evidenced by the high-quality displays now appearing in laptop and notebook computers and in other applications, manufacturers of large-area, high-resolution LCDs are clearly making significant

Table 1—Representative liquid-crystal displays

<table>
<thead>
<tr>
<th>Company</th>
<th>Part Number</th>
<th>Image</th>
<th>Screen size (in.)</th>
<th>Resolution (pixels)</th>
<th>Comments</th>
<th>Unit cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epson America Inc.</td>
<td>TCM-A9108</td>
<td>Black and white</td>
<td>7.4</td>
<td>640 x 200</td>
<td>Low-power palmtop computers.</td>
<td>$240</td>
</tr>
<tr>
<td></td>
<td>EG-9905DNS</td>
<td>Black and white</td>
<td>10.3</td>
<td>640 x 480</td>
<td>PCs, POS terminals.</td>
<td>$444</td>
</tr>
<tr>
<td></td>
<td>EG-0101NLW</td>
<td>Black and white</td>
<td>13.1</td>
<td>1024 x 768</td>
<td>PCs, workstations.</td>
<td>$1436</td>
</tr>
<tr>
<td>Hitachi America Ltd</td>
<td>TM2680IVC</td>
<td>Color (TFT)</td>
<td>10.3</td>
<td>640 x 480</td>
<td>50-msec response, 80 cd/m² brightness.</td>
<td>$3200</td>
</tr>
<tr>
<td></td>
<td>LMG5261</td>
<td>Black and white</td>
<td>9.5</td>
<td>640 x 480</td>
<td>Uses Micro-tab construction to minimize order size.</td>
<td>$500</td>
</tr>
<tr>
<td></td>
<td>LMG9060</td>
<td>Black and white</td>
<td>10.0</td>
<td>1024 x 768</td>
<td></td>
<td>$1200</td>
</tr>
<tr>
<td>In Focus Systems</td>
<td>LCD1600M</td>
<td>Color</td>
<td>10.5</td>
<td>640 x 480</td>
<td>Uses subtractive birefringent effect.</td>
<td>$1400</td>
</tr>
<tr>
<td></td>
<td>LCD5000M</td>
<td>Color</td>
<td>10.5</td>
<td>640 x 480</td>
<td>Uses three color cells: magenta, yellow, cyan.</td>
<td>$2050</td>
</tr>
<tr>
<td></td>
<td>1600-GS</td>
<td>Black and white</td>
<td>N/A</td>
<td>640 x 480</td>
<td>Projection panel, 18-level gray scale.</td>
<td>$1695</td>
</tr>
<tr>
<td></td>
<td>7600-XGA</td>
<td>Color</td>
<td>N/A</td>
<td>1024 x 768</td>
<td>Projection panel, uses three color cells.</td>
<td>$7995</td>
</tr>
<tr>
<td></td>
<td>TVT-3000</td>
<td>Color (TFT)</td>
<td>N/A</td>
<td>640 x 480</td>
<td>Projection panel, 100:1 contrast.</td>
<td>$5995</td>
</tr>
<tr>
<td>Optical Imaging Systems</td>
<td>CT4040</td>
<td>Color (TFT)</td>
<td>5.6</td>
<td>1024 x 768</td>
<td>Industrial/military grades; 4-in. square, 40:1 contrast.</td>
<td>$9800 to $11,800</td>
</tr>
<tr>
<td>Sharp Electronics Corp.</td>
<td>L09D011</td>
<td>Color (TFT)</td>
<td>8.4</td>
<td>640 x 480</td>
<td>512 colors, 80-msec response time, 60 cd/m² brightness.</td>
<td>$3550</td>
</tr>
<tr>
<td></td>
<td>LM64C301</td>
<td>Color</td>
<td>8.5</td>
<td>640 x 480</td>
<td>Eight colors, 550-msec response time, 40 cd/m² brightness.</td>
<td>$1695</td>
</tr>
<tr>
<td>Toshiba Electronic</td>
<td>TLX1832S-C3M</td>
<td>Black and white</td>
<td>9.7</td>
<td>640 x 480</td>
<td>Depth = 6.5 mm, weight = 320 grams.</td>
<td>$506</td>
</tr>
</tbody>
</table>

Note: NA = Not applicable; POS = Point of sale.
Performance’s FCT-T CMOS Logical Solution
Low-Noise, Ultra High-Speed, Low Ground Bounce

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Performance’s FCT-T</th>
<th>Leading Competitor’s FCT-T</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{OLP}}) *</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>(V_{\text{OLV}}) *</td>
<td>0.8</td>
<td>1.0</td>
</tr>
<tr>
<td>(V_{\text{HID}}) *</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td>(V_{\text{ILD}}) *</td>
<td>0.8</td>
<td>0.8</td>
</tr>
</tbody>
</table>

\(V_{\text{OLP}} \) = Peak Ground Bounce, \(V_{\text{OLV}} \) = Undershoot, \(V_{\text{HID}} \) = Dynamic Input High, \(V_{\text{ILD}} \) = Dynamic Input Low

Highest Speed, Low-Noise Solution

Performance Semiconductor now offers an ultra high-speed CMOS logic family designed for extremely low noise and available in three speed grades. The C speed at 4.1 nanoseconds is the fastest TTL compatible logic available — up to 55% faster than equivalent bipolar FAST logic products. The A and B speed grades are up to 40% faster than FAST products and the regular speed matches FAST production speeds. This 5 volt logic family, designed with a limited output swing from 0 to 3.4 volts, includes edge rate control circuitry, output feedback circuitry, and multiple transistors staged to turn on and off at different times. Performance’s FCT-T addresses additional elements that include controlled edge rates, tighter skews, matched rise and fall times, significantly improved ESD characteristics and power-off / power-down. All are offered in commercial grades (available in plastic, DIPs and SOIC) and military grades (available in ceramic DIP’s and LCC’s).

Buffers/Line Drivers

- Inverting Octal
- Non-inverting Octal
- Inverting Octal
- Non-inverting Octal
- 10-bit Non-inverting
- 10-bit Inverting
- 10-bit Bus Transceiver w/ 3 States
- Non-inverting Bus Transceiver w/ 3 States
- Non-inverting Buffered
- Non-inverting Registered
- Inverting Bus Transceiver w/ 3 States
- Inverting Registered
- Inverting Registered
- Inverting Registered
- Non-inverting Registered
- Non-inverting Registered
- Non-inverting w/ Odd/Even Parity
- 10-bit Non-inverting Transceiver
- 9-bit Non-inverting Transceiver
- 9-bit Inverting Transceiver

Latches

- Octal Non-inverting Transparent
- Octal Transparent w/ Inverted Outputs
- Octal Transparent w/ Flow Thru Pinout
- 9-bit Non-inverting Buffered
- 8-bit Non-inverting Buffered
- 8-bit Non-inverting Buffered

Registers/Flip-Flops

- Multilevel Pipeline w/ Dual 2-Level Shift
- Multilevel Pipeline
- Diagnostic Scan
- Octal D Flip-Flop w/ Master Reset
- Octal D Flip-Flop w/ Master Reset
- 8-bit Universal Shift
- Octal D Flip-Flop w/ Output Enable
- Octal D Flip-Flop w/ Clock Enable
- Quad Dual-port w/ True Outputs
- Octal D Flip-Flop w/ Inverted Outputs
- Octal D Flip-Flop w/ Flow Thru Pinout
- 10-bit Non-inverting Buffered
- 9-bit Non-inverting Buffered
- 8-bit Non-inverting Buffered

Decoders

- 1-of-8 Decoder
- Dual 1-of-4 Decoder

Counters

- Synchronous Binary w/ Asynchronous Reset
- Synchronous Binary w/ Synchronous Reset
- Up/Down Binary Counter
- Up/Down Binary Counter

Multipliers

- Non-inverting Quad 2-input
- Inverting Quad 2-input
- Non-inverting Quad 2-input w/ 3-State
- Inverting Quad 2-input w/ 3-State

Comparators

- 8-bit Identity Comparator

For more information call (408) 734-9000

For Performance Semiconductor also offers most of the above functions with 3.3V power supplies

© Performance Semiconductor Corporation
610 East Weddell Drive, Sunnyvale, California 94089
CIRCLE NO. 42
EDN April 23, 1992 • 69
LIQUID-CRYSTAL DISPLAYS

For more information . . .

For more information on the LCD panels discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you read about their products in EDN.

Epson America Inc
20770 Madrona Ave
Torrance, CA 90509
(310) 787-6300
Circle No. 709

Hitachi America Ltd
Electronics Tube Div
300 N Martingale Rd
Schaumburg, IL 60173
(708) 517-1144
Circle No. 710

In Focus Systems
7770 S W Mohawk St
Tualatin, OR 97062
(503) 692-4968
Circle No. 711

Optical Imaging Systems
1896 Barrett St
Troy, MI 48084
(313) 362-2738
Circle No. 712

Sharp Electronics Corp
5700 N W Pacific Rim Blvd
Camas, WA 98607
(206) 834-2500
Circle No. 713

Tektronix
Box 500
Beaverton, OR 97077
(503) 627-7111
Circle No. 714

Toshiba Electronic Components
1 Parkway N, Suite 500
Deerfield, IL 60015
(708) 945-1500
Circle No. 715

References

HIGH SPEED SECURITY STANDARD ASICs

For real-time encryption of data, Pijnenburg supplies a high performance VLSI chip set:

DES chip PCC100, featuring:
- 90 Mbit/sec DES throughput (25MHz clock)
- ECB, CBC, CFB and transparent modes
- master key for improved system security

RSA chip PCC200, featuring:
- 512 bits encrypted in 12 ms (modulus: 512 bits and 25MHz clock), 1024 bits in 40 ms
- modulus programmable up to 1024 bits
- extra processing capabilities for prime number generation and RSA key calculation
- CMOS VLSI chip with over 550,000 transistors(!)
- software support to verify prime numbers and calculate RSA keys

both chips have the same I/O interface for easy on-board combination.

Your specific DES/RSA chip:
- both chips can be integrated together with your own specific protocols in one chip; easily and very cost-effective.

For more information and/or samples, call or write:

PIJNENBURG
CUSTOM CHIP PRODUCTS
P.O. Box 330, 5260 AH VUGHT, The Netherlands
tel.: +31-73579058, fax: +31-73569915

CIRCLE NO. 44
The Leader In Floppy Disk Controller Solutions Announces:

FDC37C65C+

The FDC37C65C+ Floppy Disk Controller supports the new 2.88MB floppy disk drive with minimal effort and expense, while maintaining backward compatibility with the same pinout as the industry-standard FDC37C65C Floppy Disk Controller.

- Vertical Recording Format And 1Mb/s Data Rate For 2.88MB Floppy Disk Drives
- FDC37C65C Pin Compatible
- True 765B Core
- 16-Byte FIFO

Floppy Disk Controller Devices Available

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>IDE LOGIC</th>
<th>24mA BUS DRIVERS</th>
<th>2.88MB FLOPPY</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDC37C65C</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>FDC37C65C+</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>FDC37C75*</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Custom</td>
<td>Contact Your SMC Representative</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Available Packages: 40 DIP, 44 PLCC and 68 PLCC
The FDC37C75 includes Game Port.

For additional information contact:

Standard Microsystems Corporation
11 Arkay Drive
Hauppauge, New York 11788 USA
Tel. (516) 273-3100 ■ Fax (516) 231-6004
We provide more insight to a place few can.
When it comes to embedded systems design, nobody offers better solutions than FORCE.

But, we have to admit, we had a little help. From you.

At FORCE, we get inside the heads of our customers to learn about their requirements.

The result is the world's most advanced CISC and SPARC-based VME single board computers, including the latest SPARC CPU-2E boards.

What else did you have in mind? How about bus extensions—like SBus and our own FLXibus® Plus SunOS® and the widest variety of real-time operating systems and kernels.

And when your designs need to evolve to the next generation, count on FORCE for the best in VME64/Plus® or Futurebus/Plus®. Because better products come from better knowledge.

For a partner that can get your application up and running fast, call 800-237-8863, ext. 10. In Europe, call 49.89.608-14-0.

And thanks for keeping an open mind.
got the right combination of specifications, performance and price, regardless of your design needs.

AUDIO DESIGNERS SHOULD LISTEN TO THIS.

If you're designing audio components and want superb transient response, ambience, clarity and dynamic range, our products will be music to your ears.

The SSM-2017 microphone preamp has impressive noise performance (950 pV/√Hz) and ultralow THD (<0.01% @ G = 100), while the new dual OP-275 has great sonic characteristics, low noise (6 nV/√Hz) and low power requirements. And the dual AD712, which has a low offset voltage of 0.30 mV, drift of 7 µV/°C and a 16 V/µs min slew rate, delivers high performance at a low price.

A system that isn't working in harmony is a system bound for failure. Particularly if the part acting up is your low noise op amp.

Whether it's current noise or voltage noise you're concerned about, there's a simple way to make sure your system keeps humming along. Get your low noise op amps from Analog Devices.

With the broadest line of low noise op amps around, we've

THE ANALOG FAMILY

The Analog famil

74 • EDN April 23, 1992
formance of your entire system.

higher speed AD745 offer the best combination of specs — 3.2 nV/√Hz and 6.9 fA/√Hz. If your emphasis is vice versa, then the AD645 has the specs you want — 0.6 fA/√Hz for current noise, and 9 nV/√Hz for voltage noise.

OP AMPS THAT ARE INSTRUMENTAL FOR INSTRUMENTATION.

If you're working in instrumentation applications, our op amps could prove to be instrumental in your design.

The world's lowest current noise (0.11 fA/√Hz) monolithic op amp, the AD549, has 60 fA of input bias current — which is ideal for interfacing with very high impedance sources. The AD548 (single) and AD648 (dual) deliver low bias current (10 pA), extremely low current noise (1.8 fA/√Hz) and low power consumption at a highly attractive price. And the industry-standard OP-27 and OP-37 offer ultralow noise (3 nV/√Hz at 1 kHz) and precision dc performance.

THE FASTEST LOW NOISE OP AMP AROUND.

If you need low noise but don't want to give up speed, then consider the extremely versatile AD829. It has low voltage and current noise (2 nV/√Hz and 1.5 pA/√Hz, respectively), high speed (230 V/μs slew rate) and excellent video performance (0.02% differential gain and 0.04° differential phase). Making it perfect for a range of applications including office automation, imaging and data acquisition systems.

GIVE US A SHOUT IF YOU NEED HELP.

Since all of these op amps are specifically designed for applications where low noise is critical, you can just drop them into your design and virtually forget about them.

Should you ever have a question, you'll be glad to hear that our products are backed by the most responsive applications support staff in the industry.

How responsive? Give us a shout at 1-800-262-5643 and see for yourself. We'll answer any questions you've got on choosing the right low noise op amp, plus send you a free low noise op amp selection guide and SPICE model library.

Or for more information on our low noise op amps, write to Analog Devices, P.O. Box 9106, Norwood, MA 02062-9106.
Why settle for just a data generator when you can have a data generator, pulse generator and switch matrix all in one? The HFS 9000 comes ready to use, with 64K memory depth, 1 ps timing resolution, 630 MHz all formats, variable transition time, and no edge placement restrictions — for less than the cost of a data generator alone!

The new Tektronix HFS 9000 Data Time Generator: Now get complete stimulus without going to pieces.

Demo it once, and you'll never go to pieces again.
Talk to your Tek account manager today, or call 1-800-426-2200, Ext. 75.
Control-system simulation has come a long way since the seventies. State-of-the-art simulation packages are now refined enough to model the complexities of the real world.

Until recently, you were lost—or destined to do an awful lot of extra work—if you needed to simulate conditions not present in the idealistic electronics world. Now, however, control-system simulation packages are acknowledging the needs of those of us who have to design electronics for the real world. Although these packages aren’t ready to replace the engineers who use them, they are providing the means to compensate for the vagaries of reality.

Computer simulation used to require writing a program in Fortran or assembly code. To modify the model, you often had to write and debug new code before you could even perform the simulation. Today’s control-system simulation packages remove this drudgery and let you concentrate on the task of computer modeling.

Modern simulation packages let you interconnect block diagrams on a workstation terminal. They let you employ multiple inputs and outputs that can have multiple feedback loops. Their simple command structures let you run time-domain, FFT, and logic-analysis simulations. If you don’t like the results, a few keystrokes or mouse clicks modify the model so you can rerun the simulation until you get it right. Control-simulation software packages are making it easier for you to conceptualize and analyze designs before committing them to hardware.

However, computer simulation is still an art. The computer doesn’t do all of the work for you—you have to make informed judgments and give the computer what it needs to run a worthwhile simulation. You have to create a block-diagram model that is complex enough to simulate real-world conditions, yet not so complex that it makes analysis difficult.

To help you create suitable baseline models, modern simulation packages have libraries of familiar control blocks such as summers, amplifiers, multipliers, differentiators, integrators, and filters. In addition, these libraries have more complex blocks to simulate nonlinear functions and other real-world nasties (i.e., conditions that are difficult to simulate on a computer). These packages also have means for you to create user-defined blocks to simulate conditions not covered in the libraries.
The new 3900 takes you wherever technology goes.

At the speed technology is advancing, you need to be ready for anything. On a limited budget. The NEW 3900 Programming System keeps up with your most advanced designs while keeping device-programming costs down. It offers leading-edge support for FPGAs, PLDs, memory devices, and microcontrollers up to 88 pins, with future device and package capabilities built in. Yet this support is offered in device libraries so you pay for only what you need, when you need it. And you can get into the 2900/3900 Programming Series for as little as $2995.* Move up to 88-pin support and beyond with a simple upgrade.

Find out how the 3900 can make your future affordable.

Call today for more information and we’ll also send you a FREE copy of Data I/O’s all-new, and expanded 1991 Wall Chart of Programmable Devices (a $24.95 value).

To qualify, just call us with the brand name and serial number of any programmer you are currently using.

1-800-3-DataIO
(1-800-332-8246)

*U.S. list price only.
CONTROL-SYSTEM SIMULATION

Consider Tesla from Tesoft Inc. The $695 Tesla simulator software package runs on a computer with an 80286 µP or better; 640 kbytes of RAM; an EGA, CGA, or Hercules monitor; and DOS version 2.1 or later. Tesla lets you interconnect analog and digital blocks using a command-line format (Fig 1b) similar to Spice. Digital library functional blocks include logic gates, flip-flops, phase-frequency detectors, adders, counters, and 1-shot multivibrators.

Fig 1a shows a block diagram of an FM modulator driving a phase-locked loop (PLL) demodulator. The modulator consists of a 1-kHz square-wave function generator (FCNGEN) driving a VCO centered at 100 kHz. The PLL consists of a multiplier, an integrator with a built-in zero (INTEGZ), and a VCO. The control voltage of the VCO also drives a 4-pole Chebyshev lowpass filter (CHEBL) to produce the demodulated output voltage.

Fig 1b is a Tesla-language circuit file for the model shown in Fig 1a. Each line begins with an element name to define the block. The next two numbers in the line define the input and output nodes, respectively, for the block. Following the block's functional name, you assign a series of parameters to characterize the block. You can insert online comments after a semicolon.

The package's analog functional blocks include VCOs, logarithmic amplifiers, rectifiers, voltage comparators, phase modulators, sample and hold, A/D and D/A converters, multiplexers, and demultiplexers. A delay function lets you simulate time delays required for a µP to calculate a control algorithm.

After writing a netlist that interconnects the model's blocks, you can use a range of simulated test and measurement equipment to analyze the model. Tesla's test equipment includes a bit-error-rate generator, a 5-function sweep generator having AM and FM, a Gaussian noise source, a sine-wave oscillator with phase adjustment, and a pulse generator. Measurement equipment includes a bit-error-rate checker, an rms voltmeter, and a coherent phase meter.

A "NONLIN" command lets you generate a piecewise linear transfer function by defining as many as 10 input-vs-output voltage pairs. The function lets you model dead bands in bang-bang control systems as well as voltage-limiting characteristics. In addition, version 1.1 of Tesla, which was released in March of 1991, has a general-purpose mixer block that models intercept points and LO (local oscillator) and RF feedthrough. An RF amplifier block includes the 1-dB compression point and second- and third-order intercept points.

Tesla can interconnect as many as 9999 nodes. You can save simulation data on your hard-disk drive and restore the data for future analysis. If you're proficient with Microsoft's Fortran version 4.1 or later, an optional $495 MODGEN package lets you create user-defined blocks, which Tesla compiles as additions to its library.

An optional $195 OrCAD/SDT package lets you capture a schematic created using OrCAD. The package contains a library of Tesla icons that mirror the blocks in Tesla's library. You interconnect the icons using a mouse when running OrCAD. After creating a block diagram, the package generates a Tesla circuit file for simulation under Tesla.

Tutsim, from Tutsim Products, runs on a DOS-compatible computer with an 8088 µP or better. The simulation package runs with a CGA, EGA, or Hercules monitor and requires 512 kbytes of RAM for the $695 professional version. The package displays the time or transient responses of block-diagram
CONTROL-SYSTEM SIMULATION

models. A companion $445 Fansim package, which requires an additional 384 kbytes of RAM, provides analyses in the frequency domain. Fansim not only generates FFT and Bode responses, but can take the ratio of two FFT functions to calculate the poles and zeros of the intervening transfer function.

Although Tutsim's library contains a mixture of analog and digital blocks, its functions are innately more mathematical than Tesla's functions. Tutsim's digital library consists of logic gates and flip-flops you connect to create higher-scale digital functions. Tutsim's baseline functions include summers, amplifiers, differentiators, and integrators. The package also defines a variety of Z-transform functions. These functions let you construct digital filters and as many as seven embedded µPs to calculate control algorithms.

Tutsim's signal-source blocks include a pulse generator, a sine-wave oscillator, random noise, and a chirp waveform. Flow-control functions include conditional if-then-else, conditional switching, and conditional latching. Real-world control functions include electrical resistance, capacitance, and inductance; a proportional-integral-derivative (PID) controller; magnetic hysteresis; gear backlash; variable time delay; and a gear-ratio algorithm. You can supply input-vs-output voltage pairs to simulate a nonlinear function in a piecewise linear manner.

You can also create user-defined blocks using an optional $435 C-language or $900 Fortran-language package. An optional $149 OrCAD SDT IV package passes a symbol table of Tutsim's blocks to OrCAD, allowing you to capture graphical models using OrCAD and compile them in a Tutsim circuit file. If you've ever seen mathematical models created for analysis by an analog computer, then an OrCAD model of Tutsim on a terminal will probably look pretty familiar.

If you have access to a Sun-4, SPARC, DEC VAX, or an HP 9000 series 300 or 400 workstation, you may want to consider The Math Works' Simulab ($3995) for control-system simulation. Simulab is a shell for the company's Mat Lab numeric computation system. Mat Lab features extensive math functions, 2-D and 3-D graphics, and optional specialized analysis toolboxes. Because Simulab runs under the OSF/Motif X-Windows graphical user interface, you can interconnect graphical block diagrams or differential equation models by pulling down icons with the point and click of a mouse. Versions are also available for Microsoft Windows 3.0 and the Macintosh computers.

Simulab's block library contains linear and nonlinear blocks for both continuous and discrete time analysis. Signal sources include function generators and Gaussian noise sources. You can obtain a time-response reading at any node or pass the node's data into a Mat Lab file for analysis. The models employ report-quality graphics, which you can paste directly into a word-processor or desktop-publishing program.

Simulab simulates nonlinear dynamic equations by linearizing the canonical state-space equations:

\[x = Ax + Bu \\
\[y = Cx + Du \]

about a specified operating point. Because you can easily interact with Simulab's block diagram, you can change the model's parameters to investigate the effect of different parameter values on a simulation.

Simulab lets you trim parameters about a steady-state condition. The feature makes repeated analysis easier by eliminating the long run time for a simulation to reach its steady state. You specify initial condition vectors and variables that must match to simulate the steady-state condition. You can also create hierarchical models based on groups of blocks for top-down or bottom-up designs.

Make your own blocks

You can extend Simulab's block library by creating user-defined blocks using C- or Fortran-language programs or using standard Mat Lab M-files. You can also store models in standard Mat Lab M-files for porting among different computers. Simulab can also access Mat Lab's optional toolboxes, which perform robust-control analysis, parametric optimization and analysis, digital signal processing, and piecewise curve fitting using spline polynomials.

System Build from Integrated Systems Inc, starting at $9000 for
Mil/Pac™ high-density military power supplies. Now you can order Abbott’s full mil-qualified compact power supplies in both DC and AC input models. Mil/Pacs come in 20W, 35W and 50W configurations, with single (5, 12, 15, 24, or 28V) or dual (±12V; ±15V) outputs. DC-to-DC models accept input from 14V to 32V. AC-to-DC models accept 103.4 to 126.5V rms, 47-440 Hz single phase. All Mil/Pacs operate at temperature extremes from -55°C to +100°C. All are designed with a field-proven topology that has been verified by rigorous environmental stress screening. Mil/Pacs are available with or without MIL-STD-2000. Either way, the specs are worth reading. Just write us at 2727 South La Cienega Bl., Los Angeles, CA 90034. Or call (213) 936-8185.

When reliability is imperative.

Abbott Laboratories Incorporated
15735 S. La Cienega Blvd., Los Angeles, CA 90034

CIRCLE NO. 50

EDN April 23, 1992 • 83
CONTROL-SYSTEM SIMULATION

Sun or HP workstations, is another graphical control-system simulator that provides an interface to a numeric computation system. System Build has access to the engineering analysis and design tools of the company’s Xmath and Matrixx mathematical software packages via a common database. The System Build editor lets you use a mouse to select and connect icons that represent functions in a comprehensive block library.

Library blocks include summers, multipliers, PID controllers, state-space equations, logic gates, nonlinear elements, transcendental functions, and signal generators. A state-transition-diagram block manages flow control via if-then-else statements, decision trees, and adaptive control logic.

The program’s “Super Blocks” let you combine hierarchical models of many sub blocks into one functional block for top-down or bottom-up designs. When you double-click on a Super Block, you move to a finer level of detail, to the sub blocks that create the function. You can model continuous and multirate digital systems. A model can contain several μPs running at different sampling rates. You can trim the parameters of a model about a steady-state operating point by stopping a simulation after establishing equilibrium and saving the results for repeated analysis.

When analyzing nonlinear models, System Build generates an equivalent linear model about an operating point before sending data to Xmath’s or Matrixx’s database for linear analysis. In its recently released version 2.4, System Build can perform Bode plots without exiting from its simulation environment to the math package.

Xmath’s numeric computation software can generate 2-D and 3-D plots for analysis and hard copy via a Postscript-compatible print file. Optional analysis tools are available for digital signal processing, robust-control analysis, and parameter optimization. An optional Auto Code software package lets you add user-defined blocks to System Build’s li-

From a physical system, you can derive a differential equation that you can convert into a model (a) using a simulation package. This Tutsim program listing (b) produces the dynamic response (c) for the mathematical model for a second-order equation.
IR 900 And 1200 Volt IGBTs Replace Bipolar.

Current Events.

It's now official. Bipolar is yesterday's news. IR announces 900v and 1200v IGBTs in TO-3P and TO-220 packages.

They're the more efficient, faster switching, easier-to-design alternative to bipolar.

They're also more rugged, take up less board space, and less budget space. And like their 600v predecessors, they're bound to set new performance standards wherever they're designed in.

For more information about the new 900v and 1200v TO-3P and TO-220 IGBTs, just phone your local IR rep, or the IR IGBT Marketing Group at 310/640-6534. Or if you like your news delivered, we'll send you specs and samples.
CONTROL-SYSTEM SIMULATION

brary via algorithms written in C, Fortran, or Ada languages.

Although these control-system simulation packages are flexible enough to model most conditions, simulating many workaday components requires some effort. For example, if you want to simulate a dc motor, you must generate a feedback macro that includes all of the motor constants such as armature impedance, torque constant, back-EMF constant, damping, and moment of inertia. It would be nice if feedback macros for common system components were included in libraries.

The template library for Analogy Inc's Saber simulator offers a large selection of building blocks that model real-world components. To simulate a dc motor, you simply call a dc-motor template that accepts all of the motor constants in SI or English units. You can stipulate the beta, saturation current, transit time, and junction capacitance of a bipolar transistor template to simulate an often-used transistor such as a 2N2222. A single-pole, double-throw relay template includes the effects of pull-in and drop-out voltage, relay coil resistance and inductance, and the "make" and "break" times for contact switching.

Saber's extensive library is primarily oriented toward automotive and aerospace designs. A mixture of analog and digital blocks matches the capabilities of the aforementioned simulation packages. In addition, functional blocks simulate mechanical, electrical, hydraulic, and optical devices such as nonlinear electromagnetic devices, wires, fuses, A/D and D/A converters, optical encoders, and lamps. Saber runs on a Sun, HP 9000, or DEC workstation and costs from $15,000 to $100,000.

In September of 1991, Analogy Inc introduced an analog hardware description language (AHDL) that replaces the company's MAST modeling language for creating custom control blocks. The $1950 graphical AHDL package, called Design Star, features pop-up menus and schematic capture. Design Star lets you describe Saber's 4500 simulation and control blocks in the time, s, and z domains.

Mix functions and circuits

All of the simulation control packages mentioned here have extensive block libraries that permit functional system analysis. Once you're satisfied with a system's response, you still must translate a design to hardware. The $30,000 Mixed Signal Simulator from Contec allows you to model analog portions at the functional level and at the circuit level using the company's version of Spice—ContecSpice—on a Sun workstation. A model can mix transfer functions for behavioral modeling and a Spice circuit description to evaluate a circuit design's effect on the system's response. The ability to mix functional blocks with circuit blocks can reduce the simulation time for circuit analysis.

Control-system simulation packages aren't limited to just modeling engineering and physical systems. For example, a business application could be an economic model that includes the cyclic effects of demand, production delays, and accumulated inventory. You could even employ feedforward loops to model the impact of planning or forecasting. Although these software packages are flexible enough to provide analysis for a variety of disciplines, the numerical results are only as good as the simulation. The tools still require users competent enough in their particular discipline to delineate and include all the important effects of the real world.

For more information...

For more information on the control-system simulation packages discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you read about their products in EDN.

For more information...

For more information on the control-system simulation packages discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you read about their products in EDN.

Analogy Inc
Box 1669
Beaverton, OR 97075
(503) 626-9700
FAX (503) 643-3361
Circle No. 716

Contec Microelectronics Inc
2186 Bering Dr
San Jose, CA 95131
(408) 434-6767
FAX (408) 434-6884
Circle No. 717

Integrated Systems Inc
CAE Div
3260 Joy St
Santa Clara, CA 95054
(408) 980-1500
Circle No. 718

Tosoft Inc
205 Crossing Creek Ct
Rosewell, GA 30076
(404) 751-9785
FAX (404) 664-5817
Circle No. 719

The Math Works Inc
Cochisute Pl
24 Prime Park Way
Natick, MA 01760
(508) 653-1415
FAX (508) 653-2997
TWX 910-240-5521
Circle No. 720

Tutsim Products
200 California Ave, #212
Palo Alto, CA 94306
(415) 325-4800
FAX (415) 325-4801
Circle No. 721

Article Interest Quotient
(Circle One)
High 488 Medium 489 Low 490

EDN

Article Interest Quotient
(Circle One)
High 488 Medium 489 Low 490
When you need superior performance in a circuit board that's smaller...denser...faster... Multiwire Interconnection Technology provides the better alternative to conventional multilayer. That's why many of today's advanced systems have selected Multiwire for their interconnection requirements.

Multiwire Technology is more than just a circuit board. It's an advanced interconnect system, integrating state-of-the-art rule based design software with a fully-automated discrete wiring manufacturing process. The result—predictable transmission line characteristics and extremely high interconnection density, all in a package much thinner than conventional multilayer circuits.

Electrical Rule Based Layout
Signal paths are controlled by a rule based auto router providing dynamic parallelism control to minimize crosstalk and dynamic length control to specify propagation delay.

Concurrent Routing
Signal paths can be routed in both X, Y and 45 degrees on a single wiring layer, achieving extremely high density wiring allowing up to 4 wires to pass between holes on 0.050" centers.

No Via Holes
Polyimide insulated wire allows conductors to cross on a single layer, eliminating the electrical discontinuity associated with interstitial via holes required by conventional multilayer circuits.

Superior Thermal Performance
Extremely thin interconnect layer minimizes thermal resistance to the internal copper planes or optional metal core.

For specific application information contact AIT or one of the licensed manufacturers below.

WORLDWIDE AVAILABILITY

NORTH AMERICA
*AnTel, Inc.
Piano, TX
(214) 867-0000 • FAX: (214) 867-0897

Circuitech, Inc.
Eatontown, New Jersey
908-542-6550 • FAX 908-542-1612

Hitachi Chemical Electro-Products, Inc.
Tucker, Georgia
404-936-9388 • FAX 404-934-9862

I-Con Industries, Inc.
Euless, Texas
817-283-5361 • FAX 817-571-4281

*Interconnect Design Services, Inc.
Norcross, GA
(404) 448-6576 • FAX: (404) 448-9148

*Pragitech Design, Inc.
Wilsonville, Oregon 97070
(503) 682-7500 • FAX: (503) 682-5544

EUROPE
Corona SRL
Torino, Italy
39-11-998-1476 • FAX: 39-11-997-4814

Exacta Circuits, Ltd.
Selkirk, Scotland
44-44-089-64321 • FAX 44-44-750-22513

MW Technologies, Ltd.
Hampshire, England
44-252-334141 • FAX 44-252-334148

APRIL 23, 1992
1986: MAC100. We introduce a combined disk formatter and buffer controller in a single disk controller chip.

1987: ESP100. The industry's first high performance SCSI chip is born at Emulex.

1988: MAC200. Our advanced memory architecture controller is the first to include an automated Data Flow feature for faster data handling.

1989: BC200. A dynamic 4-port DMA controller for DRAM is created.

1989: TEC100. EMD combines disk, buffer, and SCSI controllers in a single chip.

1990: FAS236. We deliver the first FDI SCSI chip with a 16-bit DMA port.

1991: TEC 256. The first Fast and Wide SCSI disk controller also boosts the fastest disk data rate and highest system bandwidth.
In all honesty, we’ve been building a history of innovative microcontroller products for disk and system applications right from the start.

In fact, the first high-performance SCSI chips we designed have become an industry standard in workstation and PC platforms. And our ESP chips have been so popular they’re the interfaces of choice for OEMs and systems integrators worldwide.

But that’s just for openers. We’ve continued to lead the evolution of SCSI power—in speed, single-chip integration, full SCSI-2 support, Fast and Wide architecture, and more. Plus, we’ve created matching disk controller and buffer controller devices.

And now we’re preparing to launch a new generation of products—a whole new family of microcontrollers...to again pioneer new industry standards in SCSI and other bus interfaces.

Look for our announcements to start soon.

Or if you can’t wait, call us. We’ll send you a preview of the big picture—so you can begin to spec for the future...now.

Firsts are part of our tradition. And we’re not done yet.

Emulex Micro Devices.
THE SHOCKING REASON THE TELECOMMUNICATIONS INDUSTRY TURNED TO OMRON.
Recently, the telecommunications industry needed a new breed of low-signal relay — a relay that could withstand a shocking 2,500 volts, almost double the present standard, yet small enough for dense PCB mounting. They turned to Omron.

Omron responded with the G6N relay. It not only withstands a 2.5KV surge between coil and contacts, its footprint is almost 40% smaller than the previous standard. The G6N is the latest product to join Omron's family of low-signal relays for telecommunications, computer peripherals, office automation and more.

Why did the telecom industry turn to Omron? Because we not only have the broadest line of relays, switches and photomicrosensors in the industry, we also have a proven track record of innovation. Last year alone, we invested over $170 million in R&D, employed over 1,000 R&D engineers and introduced nearly 100 new products. The telecom industry was also impressed with our highly-automated manufacturing systems, which enable us to provide products of consistent quality in high volumes. The G6N, for example, undergoes 100% automated inspection on 13 critical performance parameters.

With more than 90 affiliates and subsidiaries, 1,500 sales locations and 17,000 employees worldwide, Omron also met the telecom industry's need to provide product and service support around the globe.

Omron's ability to meet the rigorous demands of the telecom industry may come as a shock to some people. But it effectively demonstrates our ability to meet the control demands of any industry.

For complete information on our broad line of control components, call us at 1-800-62-OMRON.
This HFA1100 family’s fast performance is made possible by Harris’ unique UHF-1 process. The shallow structure of UHF-1 transistors is the result of bonded wafer technology.

PRODUCT
- HFA1100 op amp
- HFA1120 op amp
- HFA1130 clamped op amp
- HFA1110 buffer
- HFA1112 buffer

CONFIGURATION
- Standard pinout
- Output offset adjust
- User-defined output clamp
- Standard buffer pinout
- Standard op amp pinout

Once again, the latest breakthrough in ultra-high-speed op amps comes to you from Harris. This time, it’s the HFA1100. Three times as fast as the old record holder. And just what fast-thinking engineers like you have been waiting for. Quickly imagine what you can do with a bandwidth so huge. Providing excellent phase linearity and a remarkable gain flatness of 0.14 dB to 100 MHz. And your creativity...
INNOVATIONS WITH FREQUENCY.

-3dB BANDWIDTH
AV=+1 HFA1100

1107894 MHz

START 10.000 000 MHz
STOP 3 000.000 000 MHz

APPLICATIONS
- High-Resolution Displays
- RF Transmitters/Receivers
- Medical Imaging Systems
- Radar Systems
- Flash A/D Drivers
- Video Switching and Routing/Line Drivers
- Fiber Optics

HFA1100/20/30 HFA1110/12

<table>
<thead>
<tr>
<th></th>
<th>HFA1100/20/30</th>
<th>HFA1110/12</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3dB Bandwidth</td>
<td>870 MHz</td>
<td>700 MHz</td>
</tr>
<tr>
<td>Slew Rate</td>
<td>2500V/μsec</td>
<td>2500V/μsec</td>
</tr>
<tr>
<td>Settling Time (0.1%)</td>
<td>11 ns</td>
<td>7 ns</td>
</tr>
<tr>
<td>High Current Output</td>
<td>60 mA</td>
<td>60 mA</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>-40°C to 85°C</td>
<td>-40°C to 85°C</td>
</tr>
<tr>
<td>Packages</td>
<td>8-pin PDIP,</td>
<td>8-pin PDIP,</td>
</tr>
<tr>
<td></td>
<td>CerDIP, SOIC</td>
<td>CerDIP, SOIC</td>
</tr>
<tr>
<td>Prices (100s)</td>
<td>$9.95</td>
<td>$5.95</td>
</tr>
</tbody>
</table>

needn’t stop with standard products. Because the UHF-1 process is available in semicustom, as part of Harris’ industry-leading FASTRACK™ design system. So rev up your oscilloscopes. And get your hands on some HFA1100s today. Just give us a call.
Whoever said there's "strength in numbers" was only partially right. What's missing is something you'll find only with our new mil/aero technology upgrades. The right numbers for the right situations at the right time.

#3 Simple Switchers

Simplicity advanced to the nth degree.

Simple Switchers™ can drive a 1A load at 88% efficiency for one-fifth the cost of a DC-to-DC power converter. With just four external parts.

In fact, our LM1575K family of regulators—ideal for MIL-STD-704D/1275A systems—is easily customized in 30 minutes with our free software kit and three-step design procedure.

For target acquisition and turret control, set your sights on our self-calibrating ADC1241.

#24 12-Bit Plus Sign ADCs

Self-calibration over time and temperature. A dynamic feature that reduces parametric drifts.

Get your flight platform upgrade off the ground in just minutes with our Simple Switchers.

#49 Low-Noise ACMOS Logic

Silent yet swift. FACT Quiet Series™ cuts through device noise with guaranteed specs for dynamic improvements linearity and zero errors, and eliminates the need for external adjustments.

The ADC1241 is also fast (7.7µs) and extremely power conscious (40mW). Plus, its ±5V power supply lets you tap into the power of your existing logic and microprocessor supplies.
The performance and radiation tolerance (10°) of our ECL logic is out of this world.

Launch your air-to-air missile upgrade with the precision of our 725MHz op amp. threshold, undershoot, and ground bounce. And at speeds 15% faster than standard FACT™.

No other logic can match the low noise, high speed, and low power of FACT QS, which is now available to Standard Military Drawings in CDIPs, Flatpaks, and LCCs.

Which means increased speed and accuracy for mission-critical upgrades in a single (LM6161/2/4, LM6165) or dual (LM6118) op amp. And increased stability too, because it drives large capacitive loads without oscillating.

#82 Low-Power ECL Logic

LOW POWER that diets on picoseconds.

#63 High-Speed Op Amps

LIGHTNING FAST precision.

All AC parameters are 100% tested over the mil-temp range to guarantee hyper speeds (up to 725MHz) and pinpoint precision (offset of 1mV).

Now low power can co-exist with searing speeds. Without coolants.

300 Series' power consumption is ≤ 10KH and < TTL and CMOS at 50MHz and above. And with no fans in sight.

What's more, its extended voltage range allows easy upgrades in mil/aero systems that mix 10KH and/or TTL logic.

In sum, we bring more to your upgrades than sheer strength in numbers. We deliver bold new solutions with unmatched service and support. Not just now, but for the life of your design.

Here today.

Backed tomorrow.

For free samples, software, and our master upgrade listing, consider just one last number:

1-800-NAT-SEMI, Ext. 179

JAPAN: Sanseido Building 5F, 4-15-3, Nishi-shinjuku, Shinjuku-ku, Tokyo, Japan 160 (Tel: 81 3 3299 7001; Fax: 81 3 3299 7000). Simple Switchers, FACT Quiet Series, and FACT are trademarks of National Semiconductor Corporation. ©1992 National Semiconductor Corporation.

EDN April 23, 1992 • 97
The new HP 64000 embedded debugging environment makes it easy.

If easier embedded debugging is what you're looking for, the HP 64000 can point you in the right direction, with a new graphical user interface that has pull down menus for workstation hosted products. Point and click measurements. And rapid action keys to speed up routine tasks.

For most popular processors, the interface is always the same. So you don't have to learn new commands for different jobs.

And the interface is completely integrated. Emulators, debuggers, and the software performance analyzer all operate consistently and interactively. Which means you can share data between tools, and enjoy all the productivity benefits of synchronized measurements operating in a multiple window, high-performance environment.

So, if you're looking for a simpler way to develop embedded systems, call your local HP office, or one of the numbers listed below. We'll send you a free video that shows you how the HP 64000 embedded debugging environment makes it easy.

United Kingdom (0344) 362-867 • Spain (900) 123-123 France (1-66) 82-65-00 • Italy (02) 95-300-134 Netherlands (020) 547-6669 • Germany (06172) 16-0 Singapore (65) 291-6554 • Taiwan (886-2) 714-8740 Hong Kong (852) 848-7070 • Korea (82-2) 784-2666

There is a better way.
Analog IC combines five functions for battery power management

Many system designers are extending the lifetime of their battery-powered systems by incorporating power-management logic. The ML4860 power-control IC integrates many of the analog elements needed to execute the logic's commands; it also provides voltage regulators and other power functions commonly found in battery systems. If the device's combination of power functions is not a perfect match to your system's needs, you can arrange for some modifications. The device is based on a semistandard analog array that the manufacturer can easily adapt.

The standard ML4860 chip provides the basic elements of a 100-kHz dc/dc converter and buck regulator on chip (Fig 1), allowing you to create a 3A, 5V regulated power supply from a 5.5 to 20V dc source. You need add only two power-switching transistors and some passive components. The voltage can come from a battery, an ac adapter, or both. When you use an adapter, the device will automatically drive an external power switch to disconnect the battery from the system.

In addition to the buck regulator, the device provides boost and linear regulators to generate a 12V and a second 5V source. The 12V source has an on/off control. You can therefore use the 12V source for in-system programming of EEPROM devices, then turn off the programming voltage to prevent inadvertent data changes.

The device supports your power-control logic by providing several control and output signals. For example, it generates a 2.5V reference and compares that signal internally against the battery. It provides a Battery Low signal if the battery voltage falls below 2.5V. It also supplies the reference signal on a separate pin.

Your power-management logic can also control the ML4860 chip. The device offers both a standby mode and a sleep mode. In standby mode, it turns off all of its functional blocks except the Low Battery indicator and the second 5V source. The sleep mode also turns off the indicator. Because the second 5V source always remains active, you can use it to power your power-management logic when you turn off the rest of the system. The device consumes 4 mA when active, but only 75 µA in sleep mode.

You will probably want to use n-channel transistors to switch power in your system because they are less expensive than p-channel types of similar resistance. Your system's power-control logic signals, however, cannot drive n-channel power transistors directly. The ML4860 has three translators for giving your logic signals the drive they need to handle n-channel devices. The output signals for battery switching and the buck regulator also handle n-channel transistors.

The device comes in a 28-pin plastic leaded chip carrier and costs $4.95 (1000).—Richard A Quinell
Micro Linear Corp, 2092 Concord Dr, San Jose, CA 95131. Phone (408) 433-5200. FAX (408) 432-0295. Contact Jon Klein.

Circle No. 730

Fig 1—Systems with power-management logic still need analog circuits to execute commands. The ML4860 device combines many circuits like this in one IC.
Memory modules use TSOP ICs and store 16 Mbytes on JEDEC SIMMs

The FRAMM (flexible-rigid assembly memory module) memory packaging scheme, from Memory X Inc, can pack 16 Mbytes of dynamic RAM onto a module compatible with industry-standard JEDEC 30- and 72-pin SIMMs (single in-line memory modules). The modules employ TSOP (thin small-outline package) memory ICs and maximize use of the space between SIMM modules mounted in adjacent sockets. You can choose modules that have the ×8- and ×9-bit organization used in many personal computers, or the ×33- and ×36-bit organization used in workstations from Sun and IBM.

FRAMM modules use a combination of rigid and flexible pc-board assemblies, as the name implies. A flexible circuit connects two rigid pc boards. The 2-sided flexible circuit includes a ground plane on one side and signal traces on the other. Based on a dielectric of kapton, the flexible circuit is between 0.005 and 0.008 in. thick and is laminated into the layers of the rigid assembly.

The twin rigid pc boards used in the FRAMM module each have TSOP DRAM ICs mounted on both sides. Therefore, the FRAMMs have four component surfaces. Standard SIMMs have a maximum of two surfaces. Furthermore, most standard SIMMs only use one side for component mounting.

The flexible circuit allows the manufacturer to fold the flex and align the two rigid circuit boards adjacent to each other on parallel planes. Rigid standoff design the two pc boards. One of the pc boards includes the external contact area, which is generally the finger contacts for mounting the module in a SIMM socket. The company also offers the modules with the pins required for SIP (single in-line package) sockets. The company will customize the connection to meet customers’ specific application needs.

The FRAMMs use 4-Mbyte × 1-bit dynamic RAMs to reach a 16-Mbyte capacity. You can choose modules with 60- or 80-nsec speed ratings. The 72-pin SIMM versions meet the 36-bit pinout defined by the JEDEC standard. A 72-pin, 16-Mbyte module measures 0.850 in. tall and 0.350 in. thick. The 30-pin, 8- and 9-bit versions also measure 0.350 in. thick but measure 1 in. tall.

The company offers standard 72-pin modules with 32-, 33-, and 36-bit organizations. The 33-bit version is compatible with IPX and ELC models of Sun’s SPARCstations. The 36-bit version is compatible with IBM workstations. Prices for the 72-pin modules range from $629 to $699 (100) for 80-nsec modules and from $689 to $769 (100) for 60-nsec versions.

The 30-pin modules cost $629 (100) for 8-bit 80-nsec modules and $699 (100) for the 9-bit version. The 60-nsec modules sell for $689 and $769, respectively. The 8-bit modules are compatible with systems from Apple Computer that can accept 16-Mbyte SIMMs. Memory X offers the 9-bit modules in SIMM and SIP configurations that you can use in sockets commonly found in IBM-compatible PCs and many other products.

The standard products discussed here are available now. Expect the company to extend the FRAMM technology to use higher-capacity DRAMs and also static RAMs. Currently, the FRAMMs don’t compare favorably with standard SIMMs on a dollar-per-Mbyte basis, but the FRAMMs save invaluable pc-board real estate and memory sockets. The company will also design custom modules using the FRAMM technology for unique applications.—Maury Wright

Memory X Inc, 3954 Murphy Canyon Rd, Suite D-104, San Diego, CA 92123. Phone (619) 292-1151. FAX (619) 292-0774.

Circle No. 732
All the benefits of a laser printer

LOW COST
SHARP, HIGH QUALITY OUTPUT
FAST PRINTING SPEED
PLAIN PAPER

On a much larger scale.

At last. A personal output device that combines the best features of a desktop laser printer with the ability to produce large format drawings. It’s called ProTracer — a 360 dpi desktop printer/plotter that produces A, B, as well as C-size output.

ProTracer’s speed and quiet operation come from the latest Canon inkjet technology and an Intel i960 processor. Drawings that take up to half an hour to print on a pen plotter take only five minutes on ProTracer!

And, unlike other large format devices, ProTracer isn’t limited to plotting. Start with the ProTracer base unit that incorporates resident IBM ProPrinter and Epson LQ-1050 emulations, as well as an ADI plotter driver for AutoCAD users. Then, depending on your needs, choose from a variety of optional accessories including HP-GL® and PostScript® language emulation cards.

At Pacific Data Products, we’re devoted to customer service. We offer a 60-day money back guarantee of satisfaction, one year and optional extended warranties, and free lifetime technical support. Should you require a replacement unit while under warranty, one will be rushed to you immediately to minimize your downtime.

If you’d like to expand your printing and plotting capabilities, call Pacific Data Products at (619) 597-4653, Fax (619) 552-0889.

PACIFIC DATA PRODUCTS

CIRCLE NO. 60
Video codec chip set provides MPEG, P*64, and JPEG compliance

Designers can move one step closer to building low-cost multimedia systems using AT&T’s AVP-1000 video codec (coder/decoder) chip set. The set includes a system-controller IC, two encoder chips, and a decoder IC. You can use the chip set to build a system that complies with MPEG (Motion Picture Experts Group), JPEG (Joint Photographic Experts Group), and CCITT P*64 (an international videoconferencing standard) standards. The chip set includes interfaces to AT&T’s DSP and communication ICs, further simplifying system designs.

Compression and decompression of full-motion video has limited the development of multimedia systems. Board-level products exist that can perform this video codec chore, but the boards have been too big or expensive to make multimedia a widespread success. This codec chip set can help solve size and cost problems. Compatibility with MPEG standards will make the ICs useful in desktop multimedia applications, and CCITT P*64 compatibility will fit the chips into videoconferencing applications.

Fig 1 depicts a typical system design that uses the AVP-1000 chip set. The AVP-1400C multimedia communications protocol controller handles audio and video traffic on the system bus. Based on the company’s Pacer RISC architecture, the controller relieves the host processor of system-level tasks such as multiplexing, synchronization, buffer management, error detection/correction, and communication functions. For example, the chip can multiplex and demultiplex compressed MPEG or P*64 audio, video, and user data.

The controller chip can combine and synchronize multiple communication channels. It also includes an interface to communication ICs, so you can connect the chip set to links ranging from T1 lines to ISDN. You can also connect the company’s DSP3210 multimedia DSP μP to the AVP-1400C. The chip set requires the DSP3210 to handle JPEG and audio processing.

The AVP-1400D decoder chip provides full-motion MPEG and P*64 decoding and can handle an arbitrary number of bidirectional frames. The chip accepts a data stream as fast as 4 Mbits/sec and handle frame rates as fast as 30 frames/sec. It supports resolutions ranging to the CIF (common intermediate format) and SIF (source intermediate format) levels of 352 pixels x 288 lines and 360 pixels x 288 lines, respectively. The chip can also handle MPEG still-frame decoding at resolutions as high as 1024 x 1024 pixels.

The decoder accepts data through the host bus or through a serial bus. It outputs raster-scanned 24-bit RGB (red, green, blue) or YCrCb (an alternate colorspace definition based on luminance) pixels via a dedicated pixel bus or via the host bus. Other features include a color converter, a 4-kbit FIFO buffer, and interfaces to the system controller and dynamic RAM that require no glue logic. The IC requires 1 Mbyte of 70-nsec RAM to handle P*64 and MPEG.

The AVP-1300E encoder chip handles P*64 H.261 encoding and, therefore, mainly targets videoconferencing applications. However,
ISA, EISA, or VMEbus, Ariel processor boards unleash all the power of Motorola’s DSP96002. Both the MM-96 for ISA/EISA and V-96 for VMEbus combine lightning-quick speed with large memory arrays, versatile I/O with 120 Mbyte/sec. total bandwidth, and the ability to deliver almost unlimited signal-crunching power via Ariel’s two exclusive high-speed expansion buses. And Ariel’s steadfast commitment to service and support ensures that once you’ve become an Ariel customer, you’ll never work alone.

To find out more about the MM-96 and V-96, or any of Ariel’s broad range of DSP products for Motorola, Texas Instruments, and AT&T DSP chips, you can send us a fax, leave us a message on the BBS or E-mail, or just give us a call.

Ariel offers a full line of DSP products for popular platforms

Ariel
The DSP Authority
433 River Road
Highland Park, NJ 08904
(908) 249-2900
FAX: (908) 249-2123
DSP BBS: (908) 249-2124
Email: ariel @ ariel.com

Check out the PM 2800 Family of Programmable Power Supplies from Fluke.

- IEEE-488.2/SCPI support
- Single, dual, and triple output versions
- Extensive protection features
- Intuitive front panel operation
- Prices starting at $1,650.

Call 800-44-FLUKE today and satisfy your power needs.

FLUKE
©1992 John Fluke Mfg. Co., Inc. Prices subject to change without notice. Ad No. 00211

EDN-PRODUCT UPDATE

the IC can also handle MPEG intra-coded frame compression for working on high-resolution images and digital editing. You can define the resolution in multiples of 16 to a maximum of 720x576 lines. A follow-on encoder, the AVP-1400E, will handle P*64 H.261 and full-motion MPEG compression.

The encoders accept raster-scanned YCrCb data via the host bus or a dedicated video bus and output compressed data via the host bus or a serial bus. On-chip FIFO buffers absorb picture-dependent fluctuations in the compressed data rate. The ICs also include an adaptive buffer-control algorithm that enables users to adjust picture quality in P*64 applications. You have to add 1 Mbyte of dedicated 60-nsec DRAM to use the ICs in MPEG and P*64 applications.

For videoconferencing and low-cost multimedia applications, you can buy the chip set with the AVP-1300E encoder next quarter. The 3-chip set costs $376 (10,000). The AVP-1400E encoder, which adds MPEG compatibility, will be available in the fourth quarter of 1992.

— Maury Wright
AT&T Microelectronics, Dept 52AL040420, 555 Union Blvd, Allentown, PA 18103. Phone (800) 372-2447; in Canada, (800) 553-2448. FAX (215) 778-4106.

Circle No. 731

WHAT'S COMING IN EDN

To help you make the most of your trip to Boston for the Electro show, EDN Magazine's May 7, 1992, issue will provide all the info you need to plan your agenda. Our Electro/92 preview includes product reviews and highlights of some of the 60 technical sessions and 800 exhibits scheduled for the show.
400 MOPS FOR 6U VMEbus SYSTEMS

This 6U VMEbus board performs 400 million operations per second and is optimized for frequency domain processing such as FFTs and finite impulse response (FIR) filters using fast convolution. The FDaP features a private 32-bit, 20 MHz high-speed data I/O bus and extensive double buffering for continuous processing of real-time data. An additional 32-bit complex output provides phase/magnitude data. The a66540 is available in 25 MHz and 40 MHz versions. A single 40 MHz version can execute a 1K point FFT in 132.7 μs and a 64K point FFT in 13.1 ms. For even higher performance, you can cascade the chip. Both utilize a 144-pin PGA format and are available in 30 and 40 MHz versions. To receive complete technical information, call array Microsystems’ Hotline: 719-540-7999.

CORNERTURN PROVIDES QUANTUM LEAP IN 2D IMAGE PROCESSING PERFORMANCE

The a66545 Cornerturn™ board, used in conjunction with the a66540 FDaP board for real-time two-dimensional image processing, is the first capable of processing an entire 256 x 256 pixel frame of image data in 15.2 milliseconds. This equates to a continuous, real time rate of 65 frames per second. For 512 x 512 images, the board set transforms images in 71 milliseconds, or 14 frames per second. Designed for medical imaging, radar, sonar, machine vision, and other real-time 2D image processing applications, the board set features performance of 400 MOPS at a clock rate of up to 40 MHz. The Cornerturn accepts 32-bit complex I/O data through 10 MHz double-buffered external I/O connectors or through the VMEbus and stores it in one of four on-board frame store memory buffers. For technical assistance, call array Microsystems’ Hotline: 719-540-7999.

SOFTWARE DEVELOPMENT TOOLS LAST LINK IN COMPLETE SYSTEM SOLUTION

arraysoft, a complete DSP software development system supporting a66 Family of Products, provides a menu driven user interface allowing easy access to a suite of powerful development tools at the click of a mouse. This development system features a DaSP/PaC code generator, assembler, disassembler, window generator, full DaSP/PaC program control, on-screen display of data, and board-level diagnostics. For technical information or original program assistance, call array Microsystems’ Hotline: 719-540-7999.

PC-FDaP PERFORMS 250 MOPS!

The a66550 Frequency Domain array Processor (FDaP) brings high performance FFT processing to any PC-AT compatible computer. The two board set will fit into two full size PC-AT slots, operate on the 16 bit PC-AT (ISA) bus, and allow real or complex input from either the high speed connectors on the back panel or from the PC-AT bus. The FDaP accommodates an optional complex I and Q to magnitude-and-phase converter for post-FFT processing. Available in two memory configurations, the a66550 handles complex FFTs up to 32K points and real FFTs up to 64K points. The a66550 can compute a 1024 point complex FFT in just 210 μs. For complete technical information, call array Microsystems’ Hotline: 719-540-7999.

THE DaSP/PaC CHIPSET:
The heart of the world’s fastest DSP product family

The Digital array Signal Processor (DaSP) executes 16 high-level instructions, including FFT butterflies, windowing, complex multiplies, and general-purpose functions. The Programmable array Controller (PaC) manages the entire system, including address generation for the DaSP and memory, and I/O up to 80 MHz. Using a single chip, for example, a 1024 point FFT requires only 12 instructions and can execute in only 131 μs; a complex FIR filter, using 28 instructions, processes at a 2.3 MHz rate. For even higher performance, you can cascade the chip. Both utilize a 144-pin PGA format and are available in 30 and 40 MHz versions. To receive complete technical information, call array Microsystems’ Hotline: 719-540-7999.

VME DSP
1K FFT/79.6μs

DSP engine for industry-standard VMEbus

Call the DSP Hotline: 1-719-540-7999
1420 Quail Lake Loop, Colorado Springs, CO 80906

Circle No. 181 FOR LITERATURE ONLY

Circle No. 182 FOR SALES REP TO CALL

EDN April 23, 1992 • 105
It seems like every time you turn around, another device appears on the scene. Smaller SMDs, finer pitched leads, congested boards. Device testing has become a real challenge.

Fortunately, Pomona helps you conquer the problem.

With Pomona’s new FIN™ (Flexible Interface Network) test clips, set-up time is dramatically reduced. You can rely on repeatable contact with every pin, every time. No messy soldering to traces or leads, no wasted time chasing the wrong problem. Interfacing with your logic analyzer or other test equipment is simple and quick.

FIN clips “lock-on” to high pin count (100-, 132- and 196-pin) JEDEC plastic or ceramic QFPs, and you can choose from three styles in each pin count to work best with your equipment. There’s a platform with .100” headers for easy grabber attachment or connection to industry standard (IDC) connector cables, another with .050” connectors on flex circuitry for direct attachment to your own emulation board, or a FIN clip with integral .050” connectors for interface with most instrument ribbon cable assemblies.

And don’t forget the complete family of Pomona test clips or handy clip kits for DIP, SOIC and PLCC packages including PGA adapters, breakouts and 18 styles of EIAJ adapters. Whether it’s design or emulation, production testing or field service, call us or FAX your requirements for a quick solution. Pomona Electronics, 1500 E. Ninth Street, P.O. Box 2767 Pomona, California 91709 U.S.A. (714) 469-2900 FAX (714) 629-3317.

We’re Making Technology Easier To Live With.
Windows-based tool simplifies programming 186 µCs and peripherals

Coding a new microcontroller (µC) is often a painful trial-and-error process, absorbing loads of time and generating lots of mistakes. Now, for the Intel 80C186 line of µCs, there's an easier way to come up to coding speed: use ApBuilder, a graphical on-line reference and code-generation package. With this MS-Windows-based tool, engineers have both a visual programming tool for coding chip peripheral functions and an interactive on-line reference that's free of charge.

With ApBuilder, processor- and peripheral-programming documentation is on line and easily accessible. You can look up critical hardware details as you go, without having to sort through hard-to-read manuals. Even better, you can access a set of definitions for each instruction operation, including detailed instruction timings (in clock cycles and µsec). The software even generates different instruction-code examples based on selected addressing parameters.

ApBuilder is an on-line programming aid, supplementing a Windows-based text or program editor for coding. If you need help coding, you just pop open the ApBuilder window and get your answers. In addition, you can use the package to generate assembly-language code to program the 186 peripherals.

ApBuilder will generate the code from dialog-box controls that you set. You can then paste this code in the Windows' Clipboard, return to your editor, retrieve it, and place it in your source code.

ApBuilder obsoletes old-fashioned, hard-to-use text-based interfaces. This tool runs in full color on MS-Windows and is highly interactive. Its interface is easy to use, consisting of an active menu—a menu bar made up of operation icons and a block diagram of the 186 µC. This diagram blocks out the major components of the CPU and serves as a selection device. You simply click on a block that's the portion of the processor you're interested in, and then pick an ApBuilder process function by clicking on its menu icon. This interface is easy to pick up and eliminates pull-down menu-selection lists.

ApBuilder breaks down the 186 into functional units: CPU, ICU (interrupt controller), TCU (timer control units), clock (power management), DMA, BIU (bus interface unit), RFU (DRAM refresh control unit), and PCB (peripheral control block—RAM peripheral registers). Any of these can be selected by clicking on the block. ApBuilder icon functions include:

- A 186 hypertext manual
- An instruction editor and reference
- A register editor that presents the peripheral registers and provides a visual mechanism to program them
- A high-level programming mechanism to set peripheral functions
- Hi-lite: compact definitions for each µC block
- Q&A: common questions and answers for each block
- On-line help.

ApBuilder makes programming the 186 in assembly language easy; you can look up instructions, do trial coding with different addressing modes, and see their exact execution times. Also, µC peripherals are easy to program at a global level. And, if you want to get down into the bit mud, you can pull up the individual peripheral registers and program them visually.

The Windows-based tool supports the 80C186 product line, the 186EA, 186EB, and 186EC. Running under Windows 3.0, the tool requires a minimum of 2 Mbytes.
of memory, although 4 Mbytes is preferable. It requires a VGA monitor (or better) for graphics.

—Ray Weiss
Intel Corp, Embedded Processor Group, 5000 W Chandler Ave, Chandler, AZ 85226. Phone (800) 548-4725; (602) 554-2388.

Circle No. 733

4-bit μC drives fluorescent display and 64 I/Os

Four-bit microcontrollers (μCs) are the versatile “Swiss Army knives” of embedded systems, delivering a range of specialized peripherals and I/O arrangements at a low cost. NEC’s μPD7523x is the latest addition to its 4-bit μC line. Aimed at electronic control and display applications like VCRs, CD players, and microwave ovens, this chip integrates as much as 32-kbyte program and 1-kbyte data memory with 76 I/O pins, an 8-bit A/D converter, five timers, and a high-power fluorescent-display controller.

The μPD723x suits industrial and control applications with fluorescent displays, which are used heavily in applications with access to standard power. The chip features a fluorescent-display controller to drive directly as many as 24 segments with as many as 16 digits. Using this chip, engineers can program as many as eight dimming levels. In addition, a keypad scanner works in conjunction with the display, picking up keypad data entry and setting an interrupt for processing.

The 4-bit processor runs with a 6-MHz clock, delivering a 0.67-μsec minimum instruction cycle time. However, processor clock rates can be varied under program control for different application requirements. For low-power, low-speed applications, the chip can drop back to a 32-kHz subsystem clock—delivering a 122-μsec instruction-execution rate. Engineers can also program it to run with intermediate clock rates of 1.5 MHz or 750, 375, or 93.8 kHz.

Like a true 4-bit μC, the processor provides a large number of peripheral options, including 76 I/O lines. Software can program as many as five 4-bit ports for pull-up termination resistors. Two n-channel, open-drain 4-bit ports can have pull-up resistors as a production mask option. For pull-down termination resistors, seven 4-bit p-channel open-drain ports can provide pull-down resistors as a mask option.

The 4-bit μC supports a 4-bit data path and ALU, driven by 8-bit instructions. Data memory—1-kbyte RAM—is partitioned into four 256 x 4-bit memory banks, a 32 x 4-bit general register area, and a 128 x 4-bit peripheral hardware area. Bank switching minimizes addressing problems. Banks are selected with a memory-bank register. For fast context switching, the processor provides four general register banks; to switch context, all the program has to do is select another register bank.

The registers are held in the

NEC μPD7523/6/7/8 μC

- Clock . . . 6 MHz, also 32.8-kHz subsystem clock; can program lower-speed clock 1.5 MHz, 750, 375, and 93.8 kHz
- Instruction cycle . . . 0.67 to 1.91 μsec or 122 μsec with subclock
- Registers . . Eight 4-bit registers, 15-bit program counter, 8-bit stack pointer
- Memory . . . 1k x 4-bit RAM; 16-, 24-, or 32-kbyte ROM/PROM
- Timers Interval/watchdog, event counter, three timer/counters (one with 14-bit PWM output)
- I/O 64 lines (16 in, 24 out, 24 in/out—include 12 lines for driving LEDs)
- Special Fluorescent-display-tube driver (handles 9 to 24 segments, 9 to 16 digits, 8 levels, key scan interrupt), max high output of 40V for two pins
- Interrupts Four external, edge programmable
- Serial Two channels
- Miscellaneous . . 8-bit A/D converter
- Power 2.7 to 6V
- Package . . . 94-pin quad flatpack (20 x 20 mm)
- Price . . . 16-kbyte ROM, $6.15; (50,000), 32-kbyte EPROM, $15 (10,000)

The μPD7523x 4-bit μC directly supports vacuum-fluorescent displays with as many as 24 segments and 16 digits with 8 dimming levels. The μC series has 64 I/O lines and an 8-bit A/D converter.
NICE and simple math exposes the myth of ST-NIC.

It doesn't take a mathematical wizard to see the superiority of the NICE® Ethernet solution from the Advanced Products Division of Fujitsu Microelectronics. We think the numbers speak for themselves.

Our NICE solution, for example, requires far fewer ICs than ST-NIC's so-called single-chip solution—7 vs. 18. And that means fewer passive components as well. Making Ethernet LAN board design easier. Faster. And more cost effective than ever before.

Then, add on another factor—that NICE products are competitively priced—and systems designers clearly have a proven formula.

What's more, the fewer the parts, the smaller the size—and the lower the power consumption. All of paramount importance for motherboard applications.

Plus, because NICE is a highly automated controller, it offers substantially greater system performance for user applications—by freeing CPU and memory bandwidth. Fact is, benchmarks and customers report up to 33% higher performance over competitors' controllers. Quite an edifying statistic, don't you think?

And, unlike other available solutions, NICE has been designed to fully comply with Ethernet standards—ensuring international interoperability. Faster. And more cost effective than ever before. And that's no myth.

Then, add on another factor—that NICE products are competitively priced—and systems designers clearly have a proven formula.

What's more, the fewer the parts, the smaller the size—and the lower the power consumption. All of paramount importance for motherboard applications.

Plus, because NICE is a highly automated controller, it offers substantially greater system performance for user applications—by freeing CPU and memory bandwidth. Fact is, benchmarks and customers report up to 33% higher performance over competitors' controllers. Quite an edifying statistic, don't you think?

And, unlike other available solutions, NICE has been designed to fully comply with Ethernet standards—ensuring international interoperability. Faster. And more cost effective than ever before. And that's no myth.

For more enlightening facts, here's one more NICE number: 1-800-866-8608. Or call your local sales office for our NICE Designer Kits. And discover the world's most advanced, highly-integrated, cost-effective Ethernet solution—the NICE family of high-performance products from Fujitsu. Because all it takes to expose a little myth is a little math.

FUJITSU
RAM; there are eight 4-bit general-purpose registers per bank, but they can be paired as needed for 8-bit processing. Instructions are 8 bits wide and are held in on-chip memory, either production ROM or prototyping EPROM. Program memory sizes for the µPD75236, µPD75237, and µPD75238 are 16, 24, and 32 kbytes, respectively.

—Ray Weiss
NEC Electronics, Box 7241, Mountain View, CA 94039. Phone (415) 960-6000. Circle No. 734

Static 8051 runs at 1.8V and draws 2.5 mA at 3 MHz

Engineers don’t have to sacrifice their old favorite—the venerable 8051 µC—for low-power applications. The Signetics 80CL51 is a static implementation that needs as little as 1.8V on the power rails. A standard 8051, the 80CL51 is a static design in a 40-pin package.

Running at 3 MHz, the chip draws less than 2.5 mA at 1.8V. Power dissipation drops even further as the clock rate scales back; at 32 kHz, power drain is less than 0.05 mA at 1.8V. The static design’s operating frequency runs from 32 kHz to 12 MHz with the internal oscillator (and to dc with an external clock oscillator). For comparison, at a normal 12 MHz and 5V supply, the 80CL51 draws about 10 mA of current.

The chip supports two power-control modes: idle or power-down mode. In idle mode, the clock continues to run, preserving CPU status, but the timer and interrupt peripherals lose status. The RAM and special-function registers (SRFs) are still valid. In power-down mode the clock is stopped and only RAM is preserved. The 8051’s idle mode is exited via an interrupt or reset; power-down mode, via reset.

For more system options, the vendor added eight interrupts, each of which can cause an exit from power-down mode. At 1.8V with a 3.58-MHz clock, current consumption is 2.5 mA, 1.0 mA, and 10 µA for standard, idle, and power-down modes, respectively.

The 80CL51 is a ROM part. A piggyback version supports application prototyping and debugging. Built around a bond-out chip, the package has a connection on top for a standard EPROM/RAM to “ride piggyback.” The chip uses the external memory as it would on-chip memory—there is no additional delay for accessing external program memory. The socket supports as much as 16 kbytes of EEPROM, making it easy to debug. Not only can users change their code, but they can add additional debug code, including a monitor.

The piggyback version provides two serial options: a standard UART and an I²C serial bus. Engineers can use the I²C bus to link to a host processor and debug via a ROM monitor. However, you need special hardware to convert the special serial bus into a standard RS-232C interface.—Ray Weiss
Signetics/Philips Components, 811 E Arques Ave, Sunnyvale, CA 94088. Phone (408) 991-2000. FAX (408) 991-2311. Circle No. 735
BNC Cable Assemblies for Critical Applications

- Impedance matched
- High strength molded terminations

Meritec's impedance matched BNS cable assemblies feature precision, high strength molded terminations for high reliability in critical applications. The assemblies are available in a variety of configurations, including cable end plug, cable end jack, front panel mount jack, front panel mount jack with isolated ground, and rear panel mount jack. The connectors are terminated using subminiature coax cable and feature standard BNC and cable impedances of 50 and 75 ohms. The assemblies may be terminated with Meritec's SSI™, SSC™, or PCB Solderable interconnects on the opposite end.

Digital and Analog Interconnect Systems that Maximize Board Density and Budget

If you need speed and performance in a digital or analog interconnect system but have a limited budget, turn to Meritec. Meritec digital and analog interconnect systems are designed to meet the requirements of electrically sensitive applications using high speed CMOS, ECL or GaAs logic. Our systems are engineered to provide controlled impedance and propagation delay while minimizing crosstalk. You get stock quality backed up with technical service and applications support. All at a cost that's well in line with tight project budgets.

For more information and free literature on the complete line of Meritec digital and analog interconnect systems, call 216-354-3148.

Single Signal Interconnects—High Performance in a Subminiature Package

Meritec's economical 1x2 and 1x3 Single Signal Interconnects (SSI™), are engineered to match application requirements for controlled impedance and propagation rate while minimizing crosstalk. A spring latch connects the termination to the housing or to Meritec's Single Signal Carrier Systems (SSC™), which allow grouped interfacing with single, dual or triple row headers. Precision, high strength molded terminations provide reliability in critical applications. Boxed contacts with thermo resistance welding provide the ultimate in electrical continuity.

Multi Signal Interconnects (MSITM)

- Controlled impedance
- Low crosstalk

Meritec's Multi Signal Interconnects are designed for TTL fast and fast CMOS logic. The high performance assemblies can be terminated to FEP (shown), PTFE or Meritec's own Filatex™ textile cable. The assemblies are available in standard end-to-end terminations or can be daisy-chained for special applications. High and low profile configurations are available. Abrasion-resistant jacketing and EMI/RFI electrical shielding are optional. The connectors are compatible with lock and eject headers.
Designing a system clock for a high-performance application can be the ultimate exercise in frustration. Unless you begin by calling National. Our new family of advanced CGS™ (Clock Generation and Support) products includes bipolar, CMOS and ECL clock drivers tested and guaranteed for minimum skew. They meet the requirements of high-end microprocessors: duty cycle, skew, and edge rates. And they're supported with the development tools you need to simplify your end-system design: SPICE models and a CGS design handbook that includes derating curves. All of which means you can actually minimize skew while optimizing system speed and performance. Without losing your wits.

Protect your sanity. Call National today.

For more information on our CGS2525, CGS2526 and 100115 clock drivers, call 1-800-NAT-SEMI, Ext. 177.

CGS is a trademark of National Semiconductor Corporation. © 1992 National Semiconductor Corporation.
SAVE TIME.

Introducing the CAPSTONE-WS Component Information Systems.

TCP/IP Local Area Network

Here's a component information management system that lets everyone on your team do more. The new CAPSTONE-WS™ family of networkable IC and semiconductor component management solutions gives you the features you need to boost your organization's productivity.

- Save hours of time and effort with complete, current, and comprehensive information on more than 625,000 components right at your fingertips. That's information from over 500 manufacturers worldwide and more than 700,000 pages of manufacturers' datasheets and application notes on-line, at all times.

- Based on the CAPS® (Computer-Aided Product Selection) system running within a TCP/IP (Transmission Control Protocol/Internet Protocol) network environment, CAPSTONE-WS helps workstation and PC users manage IC and semiconductor information faster and easier than ever before.

- CAPSTONE-WS also accommodates preferred parts lists (PPLs) to encourage consistent component selection practices throughout your organization.

To find out more about how CAPSTONE-WS can help you make the most of your valuable engineering time and to ask for your free demo disk, call Jill Adams at 800-245-6696.
You Design Actel F
You Do A PLD. But Th

Use PLD Tools.
You design Actel FPGAs using the same tools as you would a PLD: ABEL™, CUPL™, LOG/iC™ and PGA Designer™. But that's where the similarity ends.

Fast, Fast, Fast.
Our FPGAs are real speed demons. Whatever application you may be working on, our parts will give you the kind of performance you're looking for.

100% Automatic Place And Route.
Coupled with your PLD tools, Actel's Action Logic™ System (ALS) software lets you create your own FPGAs—using a 386 PC or workstation—right at your own desk. With Auto Place and Route that's proven in thousands of applications.

Announcing A Simple Way To Get From PLDs To FPGAs.
If you're a PLD designer with an interest in fast, flexible FPGAs, but you think you don't have time to learn new design techniques, we'd like to change your mind.

First of all, you don't have to give up your existing PLD design tools or Boolean equations. Actel's ALES™ 1 program translates the output of PLD tools like CUPL™ and LOG/iC™ into logic optimized for our ACT™ devices. ABEL™ 4.0 includes optimization for Actel devices. Entire FPGA designs can be developed with PGA Designer™.

Actel devices offer everything you want in an FPGA. Like high I/O and flip-flop counts. And 100% automatic place and route gets you to market fast.

Once your FPGA is designed, our Action Logic™ System (ALS) converts the captured design into a completed device in minutes. To give you true, high-density, field-programmable, channeled gate arrays.

Other FPGA manufacturers fall short on design verification. Our exclusive Actionprobe® diagnostic tools, give you 100% observability of internal logic signals. So you don't have to give up testability for convenience.

It's never been easier to make your innovative designs a reality. We offer you a complete family of powerful FPGAs, like the A1010 and A1020, available in 44, 68 and 84 pin PLCC versions and implementing up to 273 flip-flops or up to 546 latches.

And the first member of our ACT 2 family, the power-
More Flexibility And Capacity.
Designing with Actel FPGAs gives you more freedom than you ever imagined. More gates. More flip-flops. More I/O. In fact, our new A1280 is the largest FPGA in the world.

Small Footprint.
Actel FPGAs give you far more gates per square inch. As much as ten times as many as the densest PLDs. That can save a lot of real estate.

More Fun.
Designing Actel FPGAs is so simple that you'll have more time to do the things that made you want to become an engineer in the first place. Or just relaxing. You've earned it.

The superior speed, capacity, and auto place and route capabilities of our FPGAs are made possible by Actel's revolutionary PLICE® antifuse programming element. The advanced technology that makes our family of FPGAs an ideal way to unleash your engineering creativity. Call 1-800-228-3532 for your free FPGA Design Guide.

CIRCLE NO. 73
Our six-row connector lets you change the ground rules.

THIS IS AMP TODAY.

AMP is a trademark of AMP Incorporated.

118 • EDN April 23, 1992
AMP TBC Plus connectors give you complete freedom in ground and signal assignment, so you can write your own 'ground rules' for outstanding electrical performance in high-speed, high-density backplane applications.

Because they are true 6-row connectors and you assign ground where you need it, near end and far end noise voltages figures in the <10 ns risetime range are far below connectors that limit ground to the outer rows or 'planes' (TBC Plus performance is even better when configured the same way!).

Our economical twin-beam receptacle design is unique in offering greatly reduced inductance in the outermost 'long' row of pins, and matched propagation delay in all lines. Capacitance is a mere 2pf, max, line-to-line.

Modular configuration (90- and 120-position sections) provides 'building block' flexibility, with applications to 810 positions or more. Header posts in staggered heights allow four-level sequenced mating.

Call the AMP Information Center near you:

Scandinavia:
 Sweden 0758-10 400 (fax 0758-194 70)
 Central Europe:
 Holland 073-200 911 (fax 073-212 965)
 Germany 06103-709 659 (fax 06103-709 619)
 Great Britain: 081-954 2356 (fax 081-954 6234)
 Southern Europe:
 France 1-33 43 37 20 (fax 1-33 43 37 20)
 Italy 011-777 1116 (fax 011-777 1116)
 Spain 93-200 84 66 (fax 93-200 84 66)

CIRCLE NO. 72
Part 1 of this 2-part hands-on design project (in the April 9 EDN) discussed the overall circuit and the schematic entry of this FPGA (field-programmable gate array) design project. Part 2 concentrates on the steps from simulation to the final functioning circuit. The project took 29 working days from start to finish.

DOUG CONNER, Technical Editor

In the April 9 issue I discussed the first part of my journey into FPGA design. The schematic part of the design wasn’t much different from ordinary SSI or MSI TTL design. Because logic simulation is seldom used in SSI or MSI TTL design, it was a new experience for me and was the greatest worry when I started the project. If you haven’t been using logic simulation, you’ll find this phase of verifying your FPGA design a big change.

For the project, I had decided to design and build a circuit to convert an analog signal to digital, record it in RAM, then play back the signal (the circuit schematic appears in EDN, April 9, 1992, pg 98).

All digital functions would be performed in the FPGA. I wanted to keep the analog portion of the circuit simple, yet be as fast as possible. I began the project by blocking out the design and figuring out what the overall circuit should do.

Days 1 to 11
Performing the initial design and selecting the analog parts took longer than I expected. I spent the first eight days doing the preliminary analog design, blocking out the digital circuit functions, selecting all the ICs, and ordering samples. On day 8, I started the schematic design of the FPGA on Viewdraw (Viewlogic’s schematic capture software).

Days 12 to 15
With the initial schematic mostly done, I counted 339
used modules. That's too big for the 295 modules on an Actel 1010 device and only 60% of the 547 modules on a 1020 device. I decided to bring triggering inside the FPGA and made a few more changes to take advantage of the capacity of the 1020 device.

By day 14, the FPGA schematic was mostly complete, letting me update the overall circuit schematic. I spent some time drawing timing diagrams to make sure all the read, write, trigger match, and other control logic would work.

I needed to have this project done in two weeks, and at this point I hadn't started simulation, which was my greatest fear in the whole project. The schematic-entry tools were working fine, but I kept finding design problems that had to be solved or improvements I considered necessary. I initiated 12-hour workdays and 6-day work weeks.

Day 16

Even though I wasn't quite finished refining the schematic, I elected to run the netlist converter (makeadl) and do a trial place and route. I couldn't afford to get bogged down in software problems during the real place and route.
I wanted to find them immediately and get them out of the way.

The netlist conversion is a single command and takes about five minutes to run. The Validator software checked the design and the computer returned the errors and warnings: I had one incorrectly named net, four fan-out errors, and ten fan-out warnings. I corrected the errors and went on to try an auto-pin placement.

The autopin software under the Pin Edit menu wouldn't run because it needed a file named design.pin, which I hadn't created yet. I put in a call to Actel, but before they returned my call, I tried some experiments. Under the configure selection on the menu I found an automatic I/O assignment selection. Reviewing the documentation, I learned that this appears to be the right menu selection to use to do the automatic I/O pin assignment. I tried it, and it worked. After you run the automatic I/O pin assignment once, the design.pin file is created. After that I could edit the pin assignments if I wanted to.

I left the automatic I/O pin assignments because they should let the automatic place-and-route software do its best job. The first time I ran the place-and-route software, it produced a fully placed-and-routed design in 16 minutes. I had used 486 modules and 57 I/O pins.

Day 17

Day 17 marked the beginning of simulation, or more accurately, the preparations. I was a complete novice at simulation, so I alternated between reading the Viewsim (Viewlogic's digital simulator) reference manual and setting up the files to provide stimulus for the circuit. I ran a few simulations to see if the file would do what I wanted.

I found learning to use the simulator similar to learning a relatively simple computer language. I used fewer than 20 of the roughly 60 commands available.

The Viewsim simulation environment (Fig 1) lets you work in three different modes. A text mode lets you input data and commands and output results. A graphical-waveform mode gives a logic-analyzer-type display showing the states of signals. You can bus signals together, such as data and address lines, so you can view many signals at once. You can also create stimulus in the graphical-waveform mode, although I didn't use that method on the project. The third method is to drop down into the schematic and see the actual data values on every node. You can even push down through the levels of hierarchy into macros so you can see what is happening inside a counter or the SAR macro (a soft macro I created).

I created my input commands and data in text files, viewed results with the waveform graphical display and occasionally dropped down into the schematic display to verify exactly where a problem identified in simulation was occurring. I found this method similar to debugging and testing real hardware.

I did not use any expect-data files to make automatic comparisons with simulation results. I visually examined the waveform graphical displays to get the most information. Although I reduced the number of signals displayed in the photographs to make them easier to read, in practice I crammed as many signals as I could onto the graphical waveform display for maximum information.

For those who haven't used digital simulation before, I can offer some comments on my experience. You have to set the initial conditions for all inputs (high, low, high-impedance, or unknown) for every input or I/O pin on the FPGA. Setting the inputs for control lines and changing them during simulation is straightforward. For bidirectional data lines such as the ones connecting to the RAM in this design, you need to drive them with

Fig 1—The FPGA software lets you observe simulation results in three different formats: text, graphical waveform, and on the schematic.
the correct data during RAM reads, and release them during RAM writes. Even after you've set up the proper conditions on all external inputs and I/O lines, you're still not done. You may have to initialize internal conditions. Some of the initializing may be covered by reset logic you've designed into your circuit, and some of it may not.

For example, the address counter (Fig 11 in Part 1, pg 98) is a free-running counter. When the simulation starts (and in the real hardware) the address is in an unknown state. After each count cycle, the hardware progresses from some initial state \(n \) to \(n + 1 \), then \(n + 2 \), and so on.

When you start simulation, the counter is in an unknown state and will stay there. To get useful simulation results, you have to force the counter into a known state, and then it will begin counting. I forced the counter's outputs to an initial state, then released the outputs, and the counter ran properly. You should label all counter output nets so that you can force them to known states during simulation.

Simulation is slow compared with real hardware, so you need to keep the clock-cycle count low if you want to make many simulation runs. Most of my simulation runs were a few hundred clock cycles or fewer. I don't believe a simulation ever took more than five minutes to run; a typical simulation run took about two minutes. For reference, the design is 1514 gates by standard gate-array counting measures. I ran the software on a 33-MHz 486 PC with 8 Mbytes of RAM.

To run the 15-bit counter through all 32,768 cycles would have taken nearly 400,000 clock cycles. Rather than having the simulator run for a day and generate reams of data, I forced counters to states near where some event should happen (or shouldn't happen, but might), released the counter, and let it count through the cycles I wanted to see. Then I forced the counter to the next event of interest (Figs 2 and 3).

My approach to simulating the design was twofold. First I tried to identify every part of the circuit where I had concerns, list them, and then make simulation test cases to verify that the function per-

<table>
<thead>
<tr>
<th>Table 1—FPGA and other products used on this project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>Actel</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Analog Devices</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Hewlett-Packard Co</td>
</tr>
<tr>
<td>Linear Technology Corp</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Editor's analysis

All things considered, my opinion based on this project is that designing with an FPGA is actually easier than designing with SSI and MSI logic. You can use the same schematic design approach you are familiar with. You don't have to use simulation to design with FPGAs, but I'd highly recommend it. My first attempt at simulation wasn't perfect, but it got me close. Finding the last few bugs in hardware and correcting them was not a problem. Correcting the bugs did not even necessitate pc-board changes.

I no longer wonder what applications FPGAs are useful for, but rather what applications still make sense for small- and medium-scale integration TTL and CMOS logic. High-current bus drivers are one; extremely simple logic circuits are another. Some high-speed logic will favor SSI and MSI devices, but a number of FPGAs are available with the capability of loading and operating 16-bit counters in the 50- to 100-MHz speed range.

Price is perhaps the biggest barrier to FPGAs' taking over the low- to medium-volume logic market. At $36.25 (100) for the device I used, it's competitive with SSI and MSI devices, especially if you factor in the cost of pc-board space and the flexibility to make design changes easily. As you move to higher-density and higher-speed FPGAs, you'll pay a premium over SSI and MSI parts.
formed as expected. These cases include counters, magnitude compares, optical-encoder signal decode, and others. Second, I simulated the FPGA as a whole, performing entire sequences of clearing, arming, recording, and playing back the data. Other simulation sequences tested the trigger-level and trigger-position-adjust operations.

My concerns on this design were mostly functional. Counters have to count, so I simulated all major transitions. In fact, it's a good idea to test all macros you create or alter separately. And because macros contain relatively few gates, they simulate quickly. Even though I tested the counter macros that I modified, I still tested the entire counter in the full schematic.

Because I had already run a place and route on the design, I could export the as-routed delays to the simulator and have a more accurate simulation. But I didn't want to use the as-routed delays at that time because I was still fixing a few bugs, and the unit-delay simulation provided a faster turnaround. I could change a schematic, recompile the simulation, and simulate in about five minutes. The turnaround time with as-routed delays requires a netlist transfer, design validation, place and route, and exporting the delays to simulation. The total time for doing all those things is about half an hour.

Day 18

I spent lots of time on day 17 reading the simulation reference manual to understand the simulation commands and trying to figure out how to test my circuit with the available commands. By day 18 I was writing command files containing series of commands that initialize the FPGA and start taking it through its paces.

It seems incredible, but in two days I was able to learn enough to make simulation a useful tool. One of the attractive aspects of simulating an FPGA is that I didn't have to worry about simulation models. Anything I can design into the FPGA is covered by the simulation library. For this design, all the digi-
tal logic was in the FPGA, so I didn't see any need for board-level simulation.

Here are some of the bugs I found in one day (I corrected the bugs on the schematics in Part 1):

- D-14 needed to be gated so it only inhibited ADDR_CE (address count enable) on playback, not during record.
- &DISP_TM needed more delay so it wouldn't reset immediately when initiating CL_MEM. I had put in a delay, but simulation indicated it needed to be longer than I thought.
- The circuit was changing the compare multiplexer from compare 1 to compare 2 when the address changed during T2, instead of at the beginning of T1 (when it should happen).

I had been dreading simulation. I assumed I'd be bogged down in learning to use difficult software. Instead, I find myself a simulation convert—learning the software is reasonably easy. The bugs jump right out once you start exercising the circuit functions. It's just as much fun as debugging hardware, and you don't have to put probes on difficult-to-reach pins.

Day 19

I made a few changes to the successive-approximation logic and decided to create a soft macro (called SAR). I ran more simulation, and then I ran the place-and-route software and generated as-routed delay information for simulation. I spent a couple of hours making a final check of what remained to be simulated before I was ready to call simulation done.

The list of what was left to simulate seemed long, but because I was more familiar with the simulation commands and had simulation command files to perform most of the major functions on the FPGA, it went faster. I put simulations together quickly by calling initialization routines I'd already written, adding some commands, or modifying an existing command file.

I made some changes to the schematic and compressed the design onto fewer sheets. I then wanted to delete the excess pages, but couldn't find a utility for deleting schematic sheets. Instead, I deleted them from DOS.

A few hours later while simulating the design, things weren't quite right. I traced the problem to a 2-input multiplexer with the correct data going in, the correct data on the select pin, and unknown data on the output. I expected to find another output driving the net, but a double-check of the schematic indicated that that wasn't the problem.

This was my first, and only, serious problem with the simulation tools. It lasted for about two hours. Finally, I made the connection that perhaps the schematic sheets I deleted were not completely gone. It turns out that when you save a schematic sheet, the software creates a wirelist description file in the WIR directory. I deleted the files in the WIR directory for the schematic sheets I had deleted earlier, recompiled the simulation file, and was back on track. Of course, the simulation tools weren't really at fault, but I never did find anything in the documentation about how to delete schematic sheets properly.

I continued on to simulate the as-routed delays, exporting the delay information after a place and route into the simulator. The relatively short place-and-route time (approximately 15 minutes) is really useful when you make a design change and want to get back into a simulation with accurate timing.

Day 20

On day 20, my schedule called for having the design done and a functioning prototype board in one week, leaving me a week to tie up any loose ends before the article was due. However, I still hadn't got the design to the point where I wanted to freeze the FPGA pinouts. After that, I needed to lay out the prototype board, build the
board, program the FPGA, and get the circuit working.

Later that day, while running through my simulation test cases, I discovered a serious error: The FPGA would never write the memory-full signal to D14 because of a setup timing error. The problem was very easy to fix, but it made me wonder how many other errors remained.

I made a few minor changes and tried to run a unit-delay simulation, which didn't work. All the timing is in even clock cycles, but unit delay simulation should give each logic module a 1-ns delay. I'm reasonably sure what the problem is, but don't know how to fix it.

Once you run the place and route software and export as-routed delays, the simulation software shifts from unit delay to zero delay per interconnect. It then looks up the real delay for each interconnect in a file. Because I've changed the schematic, the software apparently knows it can no longer use the as-routed delay file, but it isn't resetting the simulation to unit delays. I could have called Actel and found out how to fix the problem, but I elected just to run the place-and-route software, export the delays, and get on with simulation. I was at the point where I needed the timing accuracy anyway. (After I finished the project, I called Actel and got the answer to my problem. After you export the as-routed time delays, the software creates a file named design.VAR in your workview directory. You need to delete that file and run export wirelist in the schematic window to return to the unit-delay simulation.)

My particular design had very few cases of critical timing because I was running at low clock rates. My requirement was 2 MHz, and 10 MHz was my goal for the digital.

The analog part of the design could play back at more than 2 MHz, but the record mode probably couldn't go beyond 2 MHz and still settle properly during conversion. With this extremely loose timing, I didn't have to make any changes for speed in the design; I was more concerned about saving gates.

When designing faster circuits, you need to be sure critical networks don't end up with long interconnect delays. These long delays happen when two interconnecting modules are spaced far apart on the FPGA. The automatic place and route software attempts to place the design into the modules with a minimum of long interconnects. For this FPGA, long-vertical tracks are the worst, and long-horizontal tracks are the next worst. My design ended up having 16 long-vertical and 54 long-horizontal tracks.

The way you protect critical networks from long delays is with a network-criticality assignment. You can assign networks a criticality value of fast, medium, or uncritical. Fast or medium criticality keeps nets off long interconnects. You can designate as many as 5% of the nets fast and 15% medium. Assigning nets uncritical when they can tolerate long delays lets the routing software connect them with long tracks when necessary.

In my design, I designated fast criticality for the write-enable circuit because the tightest timing is at the end of a write cycle to the RAM. The RAM requires a zero hold time on the data when write-enable goes inactive. Initially, the design had a <10-ns delay time in simulation, which should be okay. The fast criticality assignment widens the margin. Eventually, I added extra gating just to be sure my timing margin stayed on the proper side of zero.

Day 21

By day 21 I was still simulating. But since the circuit was in reasonably good shape, I started to push...
the speed. I had been working with a 2.5-MHz clock because that is all the speed I needed to have. I pushed the circuit up to 10 MHz, and then to 20 MHz.

At higher clock speeds, the simulator often puts out a warning that the circuit is not yet stable. What this means is that the results of the last data or clock transition are still propagating through the circuit.

An example of a relatively long path where I would get a circuit-not-yet-stable warning is in the trigger-level compare circuit. The 4-bit magnitude-compare soft macro was listed in the data book as having four module delays. The 2-bit compare had three module delays. The last bit to change in the compare will always be IDAC10, so this part of the circuit showed seven module delays. Actually, the AND gate was combined with the latch when I compiled the design, so there were nine module delays.

Typical module delays, including interconnect, range from 0.6 nsec to approximately 11 nsec for a fanout of eight. Long tracks can push the delay to approximately 35 nsec. Using 10 nsec as a round number, the delay from a magnitude-compare input change to the trigger-signal output was 90 nsec. Because

I hadn’t specified any of the nets in the trigger-level compare circuit as being critical, long tracks could show up anywhere, even inside the soft macros. Because I had two clock cycles of 500 nsec each before I needed valid data for the nominal design condition, I wasn’t concerned. Even if every module had a long track connection, the delay would be about 315 nsec. Of course, the as-routed simulation or the static timer would show just how long it takes to get through a given path.

When I simulated the circuit at 20 MHz and stopped it to view the data one 50-nsec clock cycle after a data bit had changed going into the trigger-level compare circuit, I would get a circuit-not-yet-stable warning. The simulator was still giving me the correct results at that instant, but it was also warning me that even if all clocks and external inputs freeze in their present state, some outputs have yet to reach their final state.

The simulation indicated that my FPGA would work at 12.5 MHz. If I needed the circuit to work at 20 MHz, I’d need to go back and start assigning fast and medium criticality to the appropriate nets or change the design.

With simulation complete, I spent the second half of the day laying out the circuit for the prototype board.

Days 22 to 24

Finally I got to the point where I was ready to freeze the pinouts. I had left them floating so that the place-and-route tools would have maximum flexibility to place and

The analog-circuit performance

The dc offset of the circuit from analog input to analog output is —5 to —7.5 mV. The dc gain error is within ±1 bit (2.5 mV) over the ±5V range, although the component specifications indicate you shouldn’t expect better than ±2 bits. For better dc accuracy, you could trim the offset with an op amp on the input. Transition noise is approximately ±0.75 bit. I haven’t been able to characterize the ac accuracy of the system to 12-bit accuracy.

The circuit is useful for examining signals to about 20 kHz with its 167-kHz sample rate. Filtering to avoid aliasing is a necessity if the circuit is used to examine signals with frequencies beyond 80 kHz. The 32k-word RAM provides 0.197 sec of storage with a 2-MHz clock speed. By slowing the clock speed down to 12 kHz the circuit can sample at 1 kHz for more than 32 secs. During playback, you can increase the clock speed to 12 MHz for a flicker-free display on an analog oscilloscope.

Fig 5—The waveform illustrates the record and playback circuit capturing a signal that changes from ground to a 1-kHz, 40-mV p-p triangle wave. The waveform was photographed during playback at twice the record speed using 0.2 msec/div and 10 mV/div. You can clearly see the 2.5-mV quantization levels. The pulse on the lower trace marks the capture-trigger location.
route the design efficiently with a minimum of long tracks.

I had no more time for improvements. The only changes I could allow now were to fix bugs if I found them. As I transferred the FPGA pinout list to the full-circuit schematic, I discovered I hadn't brought out two signals—ARMED and TRIGD (triggered). I added the output pads, reran the place-and-route software, and got the signals. I used up 92% of the logic modules and 63 of the 69 I/O pins available.

On day 24, I assembled the prototype circuit. The prototype board was complete, except for an empty socket where the FPGA belongs. I created the fuse file for programming a chip, which took only a few minutes. Normally, you'd have the unit that you use to program the chip connected to your computer. When you're ready to program a device, you just put it in the programmer and run the software. I didn't have a device programmer, so I went to Actel to program my first chip. I didn’t measure the time required to program a part, but I estimate it takes about 10 minutes.

I plugged the part in the socket and powered up the prototype. I brought my power supplies and function generator with me to Actel and borrowed a scope. The circuit showed signs of life, but I couldn’t get a good trigger from the display-trigger signal (DISP_TRIG). Gradually I came to the conclusion that the problem was the scope and not DSIP_TRIG. I asked for another scope and found that the circuit could perform all the basic operations. I don’t know whether I was more surprised by my first FPGA design working, or that I handwired the prototype correctly.

I went back to my office for further testing, where I discovered a bug. As I turned the optical rotary encoder to adjust horizontal trigger position or trigger level, it occasionally jumped, rather than scrolling smoothly. The problem happened perhaps once in a hundred increments. The cause was a simple mistake: I had not synchronized the signal coming from the rotary encoder before using it in the circuit.

The rotary-encoder decode logic sets the count-up or -down signal correctly and then enables the counter for one clock cycle each time both rotary-encoder inputs are low. As the initial circuit was designed, the count-enable signal was set up for a random length of time before the clock. Most of the time the counter counted, sometimes it didn’t, and other times it jumped because part of the count logic had sufficient setup time, and part of it didn’t.

I ran the problem in simulation and it behaved just like the real thing. As I reduced the setup time below 5 nsec, jumps occurred on some count transitions. As setup time dropped below 2.5 nsec, the circuit just didn’t count.

Adding a flip-flop to synchronize the signal solved the problem. If I were concerned about metastability, I would have added a second flip-flop. The effects of metastability in this application were not catastrophic and should be very infrequent with the long clock cycles.
Atmel’s 5-Volt-only, one-megabit Flash is available. Production quantities. No waiting.

That’s 5 Volts to read and 5 Volts to write. No costly 12-Volt converter or regulator circuits to clutter your system. And, there’s more:

PERFORMANCE:
- The AT29C010 is fast—90 nanoseconds commercial, 120 nanoseconds military.

HASSLE FREE:
- The AT29C010 has one thousand 128-byte sectors, and each can be individually written or erased.

The AT29C010 has the easiest programming algorithm in town. It’s self timed and has automatic erase, so you don’t have to erase before writing.

So, if you like blazing access times, need sector write and want to save space, call, fax or write us about your application and we’ll get you a sample of the Atmel 5-Volt-only Flash.

No Waiting.

The people who make the difference.

CIRCLE NO. 74
Incidentally, I did not incorporate any debounce circuits for the switches because I previously concluded they were not necessary for this design. When switching the clock frequency, I assumed a reset was necessary.

Days 25 to 28

I added the flip-flop required to synchronize the encoder inputs to the schematic, then placed and routed the design. On this place-and-route run, all I/O pins were fixed. I resimulated all FPGA functions with special attention to make sure the bug was fixed. I also verified all other functions to make sure the place-and-route changes did not adversely affect other functions. Simulation indicated the FPGA should fully function at 12.5 MHz.

I spent the remainder of the day working over the analog portion of the circuit to get the best performance I could.

I went back to Actel to program a new chip. The problem was solved; the circuit now appears to work properly.

I spent more time on the analog. Digital is either right or it's wrong—analogue can always get better. By the end of the day I decided I had done all I could for the analog and decided to take the weekend off.

By Sunday afternoon I couldn't stay away, so I spent an hour using the circuit to capture signals. I found a bug. The circuit was supposed to capture signals with 25% pretrigger data and 75% post trigger data. About half the time it worked correctly, and the other half of the time it captured signals with 75% pretrigger data. I couldn't believe I didn't notice this problem earlier.

I was sure the error must be in how I computed the memory-trigger match signal (MEM_TM), but it took me a while to see the problem. A simple logic error. The cases I tested earlier in simulation all worked properly. I added new test cases, and the bug showed up in simulation. I fixed the error by adding an XOR gate and reverifying the circuit in simulation.

I carefully tested the hardware one more time to make sure I couldn't find any more bugs. I went through the steps of placing, routing, and verifying that all simulations ran correctly. This time I sent my fuse files for programming the FPGA to Actel by modem. They programmed the part and mailed it back.

Day 29

The FPGA arrived. I plugged it in, and the circuit was fully operational. The project was finished. Figs 5, 6, and 7 show the circuit in operation.

The circuit was designed for recording with a 2-MHz clock rate. The clock-speed limit was set by the analog circuitry performing conversion. During playback, the circuit could run much faster. At 16 MHz, all playback functions appeared to work properly. Simulation indicated that the circuit was operating on the ragged edge at 16 MHz. At 20 MHz, some of the counters were

Fig 7—The 32k-word record length provides 197 msec of data at 6-µsec intervals. The signal in (a) is an acoustic noise amplified from a microphone. The upper trace is the full record length. The lower trace shows the data beginning and end markers. The circuit captures the signal with 25% pretrigger data. Photo (b), 20 msec/div, 0.5V/div, shows the same waveform played back at 100 µsec/div. The capture trigger location is visible on the lower trace.
For demanding designs, FPGA is no longer a four-letter word.

To push performance and logic density to obscene limits, you need an FPGA architecture you can fine tune. With the CLi6000 Series, you get the fastest, most symmetrical array structure available today. It's easy to understand and manipulate. With no complex cell logic puzzles to solve.

This advanced architecture takes the curse off of conventional FPGAs. Now you can create pipelined, register-rich designs in much smaller arrays, because CLi6000 Series devices feature thousands of registers—many times the number of any comparable FPGA.

This architecture supports system speeds of up to 70MHz—the fastest in-system performance of any SRAM-based FPGA today. And it delivers lots of I/O too, even with low-density devices. So your high-I/O designs fit into smaller, less expensive arrays. Plus you get the highest silicon efficiency, with lots of small, powerful cells that pack plenty of logic into very little space.

When design talk gets tough, the tough talk to Concurrent Logic.

To order your CLi6000 Series Information Packet, call (408) 522-8703 or fax (408) 732-2765 today. Or write Concurrent Logic, Inc.
1290 Oakmead Parkway, Sunnyvale, CA 94086.

All product and company names are trademarks of their respective holders.
occasionally causing errors because the ripple carry had insufficient setup time, just as simulation indicated.

Hindsight is 20/20

The first step in simulation, and perhaps the most difficult and important one, is to make a list of all the cases that require testing. Simulation can only find problems when you look for them. My faulty logic for determining when to stop the counter to acquire 25% pretrigger data was tested using two different start addresses. Both of them worked correctly. The counter was free running and could start on any of its 32,768 values, so I didn't think it practical to test them all. Had I given more thought to the problem, I might have tested a few more critical cases to verify the logic and find the problem in simulation.

My error in not synchronizing the optical encoder inputs was a careless design oversight. Although the problem can be found with simulation—I verified it with simulation after I found it—this type of problem could probably have been avoided by taking more care in the design process. Anytime you have asynchronous signals coming into a synchronous system, they demand plenty of careful consideration to make sure they won't have undesirable effects.

I did not make the same kind of careful schematic check I normally do before having a circuit built. I thought simulation would provide a more thorough job finding errors than my going over the schematic a few more times. I also felt the time pressure to finish the project.

I think simulation did help me make a more thorough check of the logic than I could have done without it. Simulation however, should not be a substitute for carefully checking your schematic to identify potential sources of trouble. Once you've identified potential problem areas, simulation can help you test them.

Although I had hoped to be able to report a fully functioning circuit on my first silicon, reality turned out different. In retrospect, my experience on the project probably points out the strong points of FPGAs. I don't know how many days or weeks I would have had to spend on simulation to find the two bugs that slipped through. The problems were easy to find in real silicon and didn't take much longer to fix than when you find them in simulation.

I wouldn't want to push the approach of finding your mistakes in silicon too far. Simulation provides a better way to test a design over the full operating temperature and voltage ranges plus manufacturing process variations. I think of finding mistakes in silicon as a fall-back position after you've done the best you can in simulation.

The realities of schedules that don't allow weeks to simulate a design as completely as you'd like may force you into a corner if it's vital that first silicon be final silicon. I used as much time as I had for simulation—about four and a half days, which included learning to use the software, and then went on to try the real device. It would not have been worth another week of simulation to find the two problems I found in silicon. I'd have a different perspective if I'd designed a mistake into a mask-programmed gate array and spent $10,000 and lost a few weeks before I found my mistake.

Had I made a design mistake that left the FPGA with serious functional problems, I could have used the diagnostic probe capability on the FPGA. The diagnostic probes let you look at any two nodes in the FPGA with an oscilloscope or logic analyzer.

I started this project with no experience designing FPGAs and none in digital simulation. I wanted to see if designing a circuit using an FPGA was really simple enough for a designer familiar with 7400-series TTL design to jump into expecting to produce the first cir-
The fastest high density PLD.

System clock rates up to 80 MHz. And a propagation delay of only 15ns pin-to-pin. That's the kind of performance you get with our new pLSI™ family of high density PLDs. Comprised of four devices ranging in density from 2,000 to 8,000 PLD gates, they give you absolute timing predictability, right from the data sheet. Lattice also offers the ispLSI™ family—an in-system programmable (isp) version of the pLSI family that delivers non-volatile, 5-volt only in-system programming capability.

pLSI and ispLSI devices are backed by Lattice's proven E²CMOS™ technology. With low power, reprogrammability and 100% DC, AC and functional testing, the pLSI and ispLSI families offer the highest quality available. Not to mention high-speed programming and 100% programming yield. And they are available now in production quantities off-the-shelf.

So pull into the high density PLD fast lane. Call 1-800-327-8425 and ask for information packet #209.
HANDS-ON FPGA PROJECT

circuit in a reasonable amount of time.

My conclusion based on the products I used on this project is that migrating to FPGAs is a step any design engineer should be able to make. You always have to stretch yourself when learning to use new tools, but the jump shouldn’t consume great quantities of time while you come up to speed. In the course of this project, I’ve covered all the problems I had that were worth mentioning. There weren’t many. In the end, my biggest problems were the normal system design issues of deciding what the circuit should do. Once I knew what I wanted to do, designing the circuit was relatively easy.

My biggest surprise was how well the software worked. I had a few problems, but frankly I expected more. My dread of simulation turned out to be unfounded. I actually look forward to using simulation on my next project. It’s more enjoyable to find mistakes in simulation than in hardware.

For this project I chose a circuit that would not require high clock rates. As a result, I didn’t spend any time refining the design to make it run faster. Had I needed the circuit to run faster, I’d have needed more time to refine the schematic and criticality file, and I’d perform more simulation runs.

Acknowledgment

I’d like to thank the following companies for providing products for this project: Actel, Analog Devices, Hewlett-Packard, Linear Technology Corp, and Viewlogic.

Technical Editor Doug Conner is based in California. You can reach him at (805) 461-9669.

Article Interest Quotient

(Circle One)

High 485 Medium 486 Low 487
Use our low power, low voltage memory and buy more time.

If you design battery operated systems such as laptop and notebook computers, Micron's low power, low voltage memory components can buy you more time.

Micron's extensive line of leading edge, low power, low voltage DRAMs and SRAMs are designed to give you optimum 3.3 volt operation in battery powered systems, extending battery life and system operating time. Since the parts run cooler, they also increase system reliability. And we offer the latest packaging technologies such as TSOP and PQFP.

So call Micron today at 208-368-3900. And find out how to buy more time.

Micron. Technology that works for you.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Configuration</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT4C4001J VL</td>
<td>1 Meg x 4</td>
<td>Q92</td>
</tr>
<tr>
<td>MT4LC4001 L*</td>
<td>1 Meg x 4</td>
<td>Q92</td>
</tr>
<tr>
<td>MT4LC4001 L</td>
<td>1 Meg x 4</td>
<td>Q92</td>
</tr>
<tr>
<td>MT4G24001 V L</td>
<td>256K x 4</td>
<td>Now</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Configuration</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT4C1004J L</td>
<td>4 Meg x 1</td>
<td>Now</td>
</tr>
<tr>
<td>MT4G2000J L</td>
<td>1 Meg x 4</td>
<td>Now</td>
</tr>
<tr>
<td>MT4G40512 L</td>
<td>512K x 8</td>
<td>Q92</td>
</tr>
<tr>
<td>MT4LC4056 L</td>
<td>256K x 16 DW</td>
<td>Q92</td>
</tr>
<tr>
<td>MT4LC4057 L</td>
<td>256K x 16 DC</td>
<td>Q92</td>
</tr>
<tr>
<td>MT4LC4024 L</td>
<td>1 Meg x 1</td>
<td>Now</td>
</tr>
<tr>
<td>MT4G2506 L</td>
<td>256K x 4</td>
<td>Now</td>
</tr>
<tr>
<td>MT4GCL664 L</td>
<td>64K x 16 FPM</td>
<td>Now</td>
</tr>
<tr>
<td>MT4GCL670 L</td>
<td>64K x 16 SC</td>
<td>Now</td>
</tr>
</tbody>
</table>

Self Refresh

DW—Dual Write Enable

DC—Dual CAS

FPM—Fast Page Mode

SC—Static Column

OE—Output Enable

Micron Technology (U.K.) Ltd., Centennial Court, Easthampstead Road, Bracknell, Berkshire RG12 1JA, U.K., Tel: (0344) 360055, Fax: (0344) 869504

Micron Technology (Deutschland) GmbH, Marsstrasse 3, D-8011, Aschheim, Germany, Tel: 089/9 03 0021, Fax: 089/9 04 3114

Customer Comment Line: 01-208-368-3410

© 1992 Micron Technology, Inc.
Pen computers’ light weight, mobility, and durability bring computing out of the office and into some tougher territory. (Photo courtesy Tusk Inc)
Pen-based Computing

Pen computers still have problems recognizing handwriting, but their ease of use and mobility make them suitable in situations where conventional computers just won’t do.

On their way to becoming a huge overnight success, pen-based computers encountered a little problem: Although you can write directly on pen computers’ displays with a pen-like stylus, the computers can’t always read what you write. By most accounts, their ability to recognize handwriting has fallen considerably short of expectations.

Seemingly undaunted, pen-computer manufacturers now say that handwriting recognition isn’t all that important. The real issue, they claim, is how well pen computers adapt to the whole range of users’ needs. And they note that the pen, along with special software and handwriting recognition that is “good enough,” makes it possible for computers to adapt to users and to real-world situations as never before.

But these same manufacturers are still striving for improved handwriting recognition, and their results, though imperfect, are nevertheless impressive. The best recognition algorithms achieve an accuracy of about 95% on carefully printed (not cursive) characters. That’s good enough to make pen computers useful, but bad enough that they can still be frustrating to use. Consequently, most marketing efforts stress pen computers’ intuitive appeal and mobility.

No experience required

The intuitive appeal is undeniable. Writing, marking, or drawing on a pen computer’s display is almost as familiar as using pen and paper. In addition, special pen-based software eliminates much of the arcane “computerese” of keyboard commands, control codes, and file structures. The result, for people without computer experience, is a more familiar, intuitive, and perhaps acceptable way of working.

More important, though, is pen computers’ mobility. Because you don’t need a keyboard, you can use a pen computer while standing or even while walking around. The difference between the mobility of a pen computer and the mere portability of a laptop computer, which you can use only while sitting, is significant. The absence of a keyboard also increases ruggedness, making pen computers suitable for knock-about use in the rough-and-tumble real world.

The combination of intuitive use and mobility, say pen-computer de-
Pen-based Computing

Developers, makes computing power available to the millions of mobile and/or blue-collar workers who, until now, haven't been able to use a computer on the job. Police officers, utility workers, insurance adjusters, field technicians, and truck drivers are just some of the potential (and current) pen-computer users. In many applications, pen computers replace paper forms, eliminating a data-entry step that would normally involve extra people and time.

To accommodate different needs, pen computers come in four basic types—palmtop, tablet, convertible, and omnitablet. All are small enough and light enough for at least some kind of mobile use, although some are more mobile than others.

The small, light palmtop, for example, is good for all-day use; it weighs barely more than a pound. The tablet type of pen computer is fairly light (usually between three and five pounds) and has a larger screen—big enough to display a computerized full-page business form. It's about the size of a notebook and about twice the size of a palmtop. The convertible pen computer comes with a detachable keyboard and doubles as a conventional laptop computer. The omnitablet is a somewhat hefty tablet that provides easy connection to a variety of devices.

Battery life an unknown variable

Battery life varies substantially from one pen computer to another. Poqet claims its palmtop computer will operate for 16 to 48 hours on two AA alkaline batteries. PI Systems claims 12 hours or more on eight AA batteries for its tablet Infolio. Some of the more powerful

<table>
<thead>
<tr>
<th>Company</th>
<th>Computer, type, price</th>
<th>Weight, dimensions</th>
<th>Processor/ clock frequency</th>
<th>Pen-based operating systems</th>
<th>Display (pixels)</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eden Group Ltd</td>
<td>VP186, tablet, $3000 to $4000</td>
<td>4.4 lbs, NS</td>
<td>80386SX/16 MHz</td>
<td>Windows for Pen, Pen Point, Pen DOS</td>
<td>640 x 480, backlit</td>
<td>1 to 4 Mbytes RAM, 1 to 2 Mbytes flash EPROM</td>
</tr>
<tr>
<td>Grid Systems Corp</td>
<td>Gridpad, tablet, $2870 to $3570</td>
<td>4.8 lbs, 9.25 x 12.4 x 1.4 in.</td>
<td>NEC V209.54 MHz</td>
<td>Pen Right on MS-DOS</td>
<td>540 x 400, backlit</td>
<td>2 Mbytes RAM</td>
</tr>
<tr>
<td>Microsline Inc</td>
<td>Datelite 200S, tablet, $4395</td>
<td>5.0 lbs, 10.0 x 12.6 x 2.6 in.</td>
<td>80286/16 MHz (20 MHz optional)</td>
<td>MS-DOS with proprietary pen-capable shell</td>
<td>640 x 200, backlit</td>
<td>1 to 16 Mbytes RAM, 128 kbytes flash EPROM</td>
</tr>
<tr>
<td></td>
<td>Datelite 300L, tablet, $5995</td>
<td>6.6 lbs, 10.0 x 12.6 x 2.6 in.</td>
<td>80386SX/16 MHz (20 MHz optional)</td>
<td>Windows for Pen, Pen Point, MS-DOS with proprietary pen-capable shell</td>
<td>640 x 480, backlit</td>
<td>4 to 16 Mbytes RAM, 128 kbytes flash EPROM</td>
</tr>
<tr>
<td></td>
<td>Momenta Computer, convertible, $4995</td>
<td>Approximately 6 lbs, 10.4 x 11.9 x 2.4 inch (slopes to 1.2 in.)</td>
<td>80386SX/20 MHz</td>
<td>Momenta Software Environment (MSE) on MS-DOS</td>
<td>640 x 480, reflective (backlit)</td>
<td>4 to 8 Mbytes RAM, 250 kbytes flash EPROM</td>
</tr>
<tr>
<td>NCR Corp</td>
<td>NCR 3125 Notepad, tablet, $4765</td>
<td>3.9 lbs, 9.8 x 11.7 x 1.0 in.</td>
<td>80386SL/20 MHz</td>
<td>Windows for Pen, Pen Point, Pen DOS</td>
<td>640 x 480, reflective</td>
<td>2 to 20 Mbytes RAM, 8 Mbytes flash EPROM</td>
</tr>
<tr>
<td>PI Systems Corp</td>
<td>Infolio, tablet, $1895</td>
<td>2.9 lbs, 9.0 x 12.0 x 1.2 in.</td>
<td>Motorola 68331/ 16 MHz</td>
<td>Proprietary</td>
<td>640 x 480, reflective (backlit)</td>
<td>1 to 16 Mbytes RAM</td>
</tr>
<tr>
<td>Poqet Computer Corp</td>
<td>Poqet Pad, palmtop, $1995</td>
<td>1.2 lbs, 4.6 x 9.6 x 1.3 in.</td>
<td>NEC V20HL/3.5, 7, or 10 MHz software selectable</td>
<td>Pen Shell, Pen Right on MS-DOS</td>
<td>640 x 200, reflective</td>
<td>640 kbytes RAM</td>
</tr>
<tr>
<td>Samsung</td>
<td>Pen Master, tablet, less than $5000</td>
<td>4.9 lbs, 9.3 x 11.5 x 1.5 in.</td>
<td>80386SL/20 MHz</td>
<td>Windows for Pen, Pen Point, Pen DOS</td>
<td>640 x 480, backlit</td>
<td>4 to 20 Mbytes RAM</td>
</tr>
<tr>
<td>Tusk Inc</td>
<td>All Terrain Super Tablet, omnitablet, $5500 to $8500</td>
<td>6.5 lbs, 10.1 x 12.5 x 2.0 in.</td>
<td>80386SL/20 MHz (25 MHz optional)</td>
<td>Windows for Pen, Pen Point, Pen Shell</td>
<td>1024 x 768, backlit</td>
<td>8 to 32 Mbytes RAM</td>
</tr>
</tbody>
</table>

NS=Not specified
386-based systems may run for only three hours or so between battery changes or recharges. (Most of these systems use larger, rechargeable batteries.) Note, though, that it is difficult to compare operating times. Battery types and sizes vary from one pen computer to another, and there is no definition for the “typical” computer use that most manufacturers cite when quantifying battery life.

Although the hallmark of a pen computer is the pen itself, almost all pen computers have a keyboard connector. In addition, all pen computers have software that allows implementation of a “soft” keyboard on their screens; you operate displayed keys by touching them with the pen. This can be especially helpful if you get frustrated with the quality of character recognition.

Prices for pen computers range from less than $2000 to $6000 and up. The least expensive computers, PI Systems’ Infolio (a tablet) and Poget Computer’s Poget Pad (a palmtop), buck the trend toward the 386 processor. The Infolio uses Motorola’s 68331, and the Poget Pad uses NEC’s V20HL. Grid Corp, which introduced mobile pen computing in 1989 with its 8086-based Gridpad, has recently discontinued its original product in favor of more expensive versions. Its lowest priced model now sells for $2870.

At the high end of pen computers’ price range are products with hefty computing power and/or ruggedness for applications that aren’t cost-sensitive. Tusk Ine and Microsloate offer especially rugged units in the $6000 range.

Pen adds little to cost

Pen computers’ price tags aren’t unduly influenced by the pen itself. Pen hardware (pen and digitizer) adds as little as $50 to a computer’s manufacturing cost, or perhaps $200 to its end-user price. Manufacturers are using several different pen and digitizer technologies (see box, “The write stuff: pens and digitizers”). Each type has advan-
Advantages and disadvantages; it's still too early to tell which will prevail.

Competition also exists in pen-computer software. Opinions differ on just how closely pen software should resemble conventional software, and the difference of opinion has led to several different operating systems.

Microsoft, which offers Windows for Pen Computing (often called Pen Windows), claims that pen-based software should not forego compatibility with other, existing software. Consequently, Pen Windows is merely an extension of Microsoft's newly released Windows 3.1.

In opposition to Microsoft is Go Corp, with its Pen Point operating system. Go designed Pen Point specifically for pen computing and claims a fresh, clean operating system without any of Windows' conventional-computing baggage. Similarly, Momenta started with a clean slate for the Momenta Software Environment (MSE) on its convertible pen computer.

A third approach to pen-computing software puts a user-interface shell with pen capabilities on top of MS-DOS. This scheme dominates in lower-priced pen computers that don't use the 386 processor, although it is also suitable for 386 models.

Because the pen-capable DOS shell preceded the dedicated pen operating system, shells are available mainly from companies with early experience in pen computing. Pen pioneer Grid, for example, runs its Pen Right shell on its own computers and has recently begun licensing the product to others. Pen DOS, a shell from Communication Intelligence Corp (CIC), and Pen Shell, from Nestor Corp, both sprang from efforts in handwriting recognition. Some pen-computer vendors also have their own, proprietary DOS shells.

OS choice depends on user

The choice of a pen-computer operating system depends largely on the intended user. Pen Point, for example, is good for new, unsophisticated computer users. Its ease-of-use features include a display of program options in the form of a book's familiar table of contents.

Pen Windows aims at the broader market that includes existing Windows software. It runs existing...
Windows application programs without changes; if a program uses a mouse, the pen simply replaces the mouse. Pen Windows is a good choice for users who need to run the same applications in both mobile and desktop computers. Pen Windows also comes with an installable shell to shield unsophisticated users from its arcane details.

Time will tell which operating systems are successful, but for now, Pen Windows seems to have the edge. Bruce Langos, director of strategic product planning at NCR, reports that the Microsoft OS is favored by about 60% of customers for NCR's 3125 tablet computer. Go's Pen Point gets the nod from 30% of NCR's customers, and CIC's Pen DOS gets the rest. Langos notes that Pen DOS has recently been gaining strength.

The most intense software competition, however, may be in the area of handwriting recognition. Because there's so much room for improvement, anyone who creates a better recognition package will probably reap enormous benefits. Although CIC and Nestor were involved in recognition before pen computing came along, the potential market for pen computers has, no doubt, increased their efforts. Both companies sell their recognition software separate from their DOS shells, and both emphasize their recognition business over their shell business.

Putting the OS before recognition

OS developers Microsoft and Go Corp take just the opposite approach. They develop and sell recognition software with their pen operating systems, but they stress their OS business. Both Pen Windows and Pen Point can operate with recognition software from other vendors. Grid, since its introduction of pen computers, has provided its own recognition algorithms. Momenta, likewise, sells its own recognition software on its Momenta computer.

Although existing handwriting-recognition software can be disappointing, it is nevertheless impressive. It will recognize neatly printed characters in real time, and most recognition packages can identify some unconnected script letters. Some systems can even adapt to users' individual writing styles. Recognition software can't decipher connected cursive writing, though, and it has accuracy problems even with neat printing (see box, "The problem of reading your writing").

However, if a software application requires only menu selections or a check-off type of user input, then a pen is definitely adequate and possibly preferable to a keyboard. A pen is also easier to use than a mouse for some pointing and selecting operations. With a pen computer, the pen is always in your hand; you don't have to move your hand from a keyboard to a mouse and back. As NCR's Langos notes, "Once you use the pen to maneuver icons, you'll wonder why you ever used a mouse."

In addition, a pen allows image input—signatures and sketches, for example—that a pen computer can
capture as "electronic ink." A physician's signature in electronic ink may be acceptable to a health insurance company, whereas a signature converted to ASCII text would not be. An architect could sketch changes to a computer-resident blueprint without ever needing handwriting recognition.

To gesture is to command

A pen also permits gestures—simple and intuitive strokes that convey commands to a pen computer. Examples of gestures include a hand-drawn caret "å" to begin a text insertion and a hand-drawn "x" to indicate a deletion. Go's Pen Point has 11 standard gestures; Microsoft's Pen Windows has 11 system-wide gestures and others that depend on the application.

All these advantages of the pen don't eliminate the need for good handwriting recognition, but they do alleviate it. And, in the final analysis, recognition isn't all that bad. It's adequate for interpreting commands and short text sequences, although you may have to print more carefully than you'd like, and you'll have to correct some misinterpreted characters.

Pen-computer vendors figure that users can live with those limitations, for now at least. While freely admitting that handwriting recognition has shortcomings, most of the vendors also express optimism about its future. As this article was in preparation, many of the recognition packages were just being readied for formal release at the spring Comdex computer exhibit. The released versions, according to their suppliers, will have many bugs worked out and will achieve significantly greater accuracy. The next few months, as actual customers put handwriting recognition to the test, will determine if those claims are valid.

Whatever happens with recognition, the essential requirement, which pen computers meet, is mobility. Users may prefer lighter computers, but at least they can use the current crop of pen computers while walking around.

Mobility implies more than in-

The problem of reading your writing

Pen computers do only a fair job of converting handwritten characters to computer-resident text. Plus, they require you to print, not write, and some restrict you to printing in little boxes. Too often, they make mistakes.

The main problem is the tremendous variability in the way people write. Not only do different people write differently, but an individual's writing varies with circumstances. We don't write the same way when we're tired, for example, as we do when we're rested. We don't write the same while standing as we do sitting.

Developers of handwriting-recognition software are reluctant to disclose the methods they use, but they take many different approaches. Microsoft claims to have combined numerous approaches that have been investigated over the last 15 to 20 years and documented in technical literature.

Some recognition software adapts to your writing; with others, you must adapt to the software, perhaps forming some characters a certain way. Recognition accuracy improves if the software (often referred to simply as a recognizer) is adaptive. However, in order for a recognizer to adapt, you have to train it. You train a recognizer by printing some amount of text that the recognizer already knows.

Even with adaptation, recognition accuracy is limited. A good recognizer will correctly interpret about 95% of the characters you print. Sometimes—depending on the system, the user, and circumstances—accuracy is considerably lower.

That's the character-recognition accuracy. Word-recognition accuracy is worse. Assuming five characters per word, word accuracy is the character accuracy raised to the fifth power. Thus, a recognizer that correctly identifies 90% of the characters you print will, on average, correctly interpret only 59% of your words. The remaining 41% will be misspelled.

Humans wouldn't do much better at interpreting handwriting if they weren't adept at reading characters in context. On average, people looking at isolated characters can correctly identify only 96% of the characters.

Extreme variability in hand-printed characters makes recognition by a computer difficult. These samples of the numeral 2, provided by Nestor Corp, illustrate the problem.
hand use, though. It also implies use in multiple locations, which, in turn, implies the need for connection with other computers and systems. Several pen computers meet this need with optional wireless communication. A few employ the concept of docking, in which a mobile pen computer is a drop-in component of a larger system. Tusk, more than any other pen-computer company, seeks to capitalize on docking. Its All Terrain Super Tablet computer, an omnitablet, has a 200-pin connector that incorporates the entire ISA bus, enabling connection to virtually any type of external device.

What is perhaps more significant, though, is the ease of connecting the Tusk computer to a docking station. Docking is not the same as plugging in a bunch of cables; it is very much like inserting the computer into a slot. A specially designed connector on Tusk’s computer makes that insertion almost effortless; thus, the docking concept is feasible even in cramped environments and for users who haven’t the time, patience, or inclination to connect cables. Tusk president Chuck Krallman notes that one of his company’s customers has installed docking stations on the dashboards of police cruisers.

Such mobile, knock-about use requires rugged hardware. All pen computers probably benefit from advances in reliability fostered by laptop computers, but some go well beyond that. A few companies, notably Tusk and Microslate, have gone to great lengths to ensure ruggedness.

The housing of Tusk’s computer, for example, is made of Spectra, a material from Allied Chemical that is also used to make body armor. Tusk found that high shear strength was necessary to keep the housing from flexing and destroying internal components. Composite materials, such as Kevlar and carbon fiber, are high in tensile strength, but not shear strength; Spectra, on the other hand, can resist the extreme shear loading of fired bullets.

Tusk also used a special shock-mounting material for its om-

that they, themselves, have written earlier, according to Ted Fligor, director of sales and marketing at Nestor. With context, however, accuracy increases dramatically. Recognition software uses context, but not nearly as well as humans do.

To apply context at all, recognizers require assistance from the application programs they work with. A well-designed application program has a 2-way conversation with the recognizer; it passes preprocessing hints to the recognizer, and the recognizer passes back alternate character interpretations, each with a confidence value.

Fast enough for real time

The speed of handwriting recognition in pen computers is adequate, given that users must print carefully. In general, recognition takes considerable computing power, such as that of an 80386. Grid’s recognition software runs on a 10-MHz V20, however, and Nestor’s recognizer runs on the Psquet palmtop’s 7-MHz V20.

User acceptance of imperfect handwriting recognition may depend less on recognition accuracy than on other factors, such as how easy or hard it is to correct misinterpreted characters. Whether or not users will be willing to adapt to a certain way of printing remains to be seen.

Future recognizers may benefit from implementations in hardware, and some may use neural networks. And, potentially, recognizers can take advantage of additional inputs. Existing recognizers accept only x/y coordinates and pen up/down information. Current pen-based hardware and operating systems can provide more, however—pen pressure, velocity, acceleration, and tilt, for example.

These extra parameters are already useful in specialized signature-verification systems, but they can confuse the existing general-purpose handwriting recognizers. Nestor’s Fligor notes that a person always signs his or her name the same way, even when tired. That is, although the letters may look a little different, the velocity and pressure are always similar. In other writing, however, people write more slowly when they’re tired.

No quick fix

The near-term outlook for handwriting recognition is uncertain. Some people in the pen-computing business claim to see rapid improvements, but others are more skeptical. As one source notes, “People have been working on this problem for 20 years. They’re not going to solve it in the next two or three months.”
nitablet's hard disk, screen, and mother board. On impact loading, the material flashes to a liquid and then back to a solid. The reaction is very localized and fast—on the order of milliseconds.

The Datellite pen computers from the Canadian company Microslate meet Canada's Department of National Defense military specifications. In testing, the computers tolerated 400-g shocks with the hard disk running. They also withstood ten days of humidity extremes.

So-called "enviro end caps" increase the Datellites' resistance both to shock and humidity. The ribbed caps seal against water and humidity and also act as rubber bumpers. If you drop a Datellite on a flat surface, only the end caps will make surface contact.

Such ruggedness, along with mobility and ease of use, seems to indicate a promising future for pen computers. Although most pen computers aren't as durable as Tusk's and Microslate's, their compact and keyboard-free forms provide a certain amount of inherent ruggedness.

The exact direction and timing of pen computers' success remain uncertain, however. In application-specific vertical markets, where there is plenty of demand for pen computers, prices need to fall. Several thousand dollars is a lot of money to spend on a computer that a truck driver, for example, would use to log deliveries. In the horizontal market of general-purpose computer use, cost is not such an issue, but, also, the demand for pen computers isn't strong.

Still, the pen is a cheap bonus and may find wide acceptance. Because its added cost is not very significant for 386-based systems, manufacturers of notebook computers can add it as a selling point. NEC's Ultralite SL/20P is just such an example; the computer is simply an Ultralite SL/20 with an added pen and digitizer. If there is great appeal for the pen, notebook computers may give way to convertibles. In addition, a consumer market for special-purpose palmtop pen computers will probably emerge.

In another scenario, the pen could find success via an indirect route, through what we might call a Trojan mouse. The mouse is already inside computer users' walls and is well accepted as a device for pointing and selecting. But the pen, easier and more intuitive to use, is not only good for pointing and selecting, but also has potential for

** Suppliers of pen-based-computing products**

For more information on pen-based-computing products, such as those described in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

- **Communication Intelligence Corp**
 275 Shoreline Dr, 6th Floor
 Redwood Shores, CA 94065
 (415) 592-2888
 FAX (415) 592-8883
 Circle No. 650
- **Eden Group Ltd**
 The Chapel
 Rainbow SK10 SFX England
 625-576050
 Circle No. 651
- **Go Corp**
 950 Tower Lane, Suite 1400
 Foster City, CA 94404
 (415) 345-7400
 FAX (415) 345-9833
 Circle No. 653
- **Grid Systems Corp**
 47211 Lakeview Blvd
 Box 5003
 Fremont, CA 94537
 (510) 656-4700
 Circle No. 654
- **Microslate Inc**
 9025 Ignace St, Suite D
 Brossard, PQ, JAY 2P3 Canada
 (514) 444-3680
 Circle No. 655
- **Microsoft Corp**
 1 Microsoft Way
 Redmond, WA 98052
 (206) 882-8080
 FAX (206) 883-8101
 Circle No. 656
- **Momenta**
 295 N Bernardo Ave
 Mountain View, CA 94043
 (415) 666-3882;
 (415) 968-3876
 FAX (415) 969-3877
 Circle No. 657
- **NCR Corp**
 Workstation Products Div
 1601 S Main St
 Dayton, OH 45479
 (800) 225-5527;
 (513) 455-4572
 Circle No. 658
- **NEC Technologies Inc**
 1414 Massachusetts Ave
 Boxborough, MA 01719
 (508) 264-8000
 Circle No. 659
- **Nestor**
 1 Richmond Square
 Providence, RI 02906
 (401) 331-9460
 Circle No. 660
- **PI Systems Corp**
 10300 SW Greenburg Rd,
 Suite 500
 Portland, OR 97223
 (503) 293-9583
 FAX (503) 293-5920
 Circle No. 661
- **Poqet Computer Corp**
 3200 Farmch Henry Dr
 Santa Clara, CA 95054
 (408) 982-9500
 FAX (408) 496-0575
 Circle No. 662
- **Samsung Information Systems America Inc**
 3665 N First St
 San Jose, CA 95134
 (408) 434-5400
 FAX (408) 434-5555
 Circle No. 663
- **Tri Gem Corp**
 2388 Walsh Ave, Bldg B
 Santa Clara, CA 95051
 (408) 970-0844
 FAX (408) 970-0870
 Circle No. 664
- **Tusk Inc**
 1310 Gateway Rd
 Lake Park, FL 33403
 (800) 275-8875;
 (407) 881-9050
 FAX (407) 844-4351
 Circle No. 665

VOTE

Please also use the Information Retrieval Service card to rate this article (circle one):

High Interest 479 Medium Interest 480 Low Interest 481

EDN April 23, 1992
CinApse technology is so flexible and efficient, the world's leading computer and semiconductor manufacturers rely on it in a broad range of demanding commercial and military applications, including:

- Board (or flex-to-board) stacking
- LGA sockets
- Test/Burn-in sockets
- MCM/hybrid interconnect devices
- Various custom interconnects

Lightweight, yet extremely durable, CinApse accommodates temperature extremes ranging from as high as 200°C to as low as the cryogenic temperatures of liquid nitrogen. CinApse also provides excellent shock and vibration resistance. Specify the technology that enables your designs to perform at their optimum level—CinApse.

Call today for a free design consultation or sample—708.981.6000, Ext. 4291.
No two emulators run the same. The trick is to get the best functionality you can for your investment. With the SIGNUM 8051 family in-circuit emulator you get even more... you get:

- Outstanding price/performance
- Easy window interface & flash download
- Free user support
- C and PL/M debuggers
- Local variable support
- 512K Mappable emulation RAM with 256K H/W breakpoints
- Break on register ranges
- Program & external data access on the fly
- Bank switching

SIGNUM also has the Intel 8048, Zilog Z8 and Super-8, Texas Instruments DSP, the 8051/52 (from AMD, Siemens and Signetics), and more chips covered.

So, don’t just look at in-circuit emulators. The only way to truly test an emulator is to use it. Call for your own free trial and demo disk.

You owe it to yourself to find how much emulator you can really get for your money.

10 DAY FREE TRIAL

SIGNUM SYSTEMS
171 East Thousand Oaks Blvd.
Thousand Oaks, CA 91360

Info. Tel: (415) 903-2220 FAX: (415) 903-2221

writing. The mouse, having opened the door to point-and-click computer control, could find itself replaced by its more capable pen offspring.

If success for the pen does come in that manner, the term “pen computer” may simply disappear. We won’t think of pen-based computers; there will simply be computers that have pens. Whether or not they have keyboards will depend on their intended use.

Reference

Gary Legg, Senior Technical Editor, can be reached at (617) 558-1404, FAX (617) 558-4470.

Article Interest Quotient
(Circle One)
High 479 Medium 480 Low 481
ASICs, application specific integrated circuits, make your products more intelligent and perform better. ASICs pack more power into smaller space for improved reliability. This Conference Exhibition is one of a kind. Here under one roof, you can meet everyone involved in studying, designing, developing and producing ASICs and their environment. So get on the circuit and overtake your competitors. And for the first time ever, an open users forum will be devoted to small and medium-sized companies and their initiation into the world of ASICs. (Registrations can be requested by calling (33-1) 40 39 16 58 or (33-1) 40 39 16 59)

For information, contact: SEPIC-EUROASIC 92, 17, rue d'Uzès F-75002 Paris, Tel. (33-1) 40 39 16 82, Fax (33-1) 42 36 20 60

The specifically intelligent circuit
Toshiba ships world’s first NEURON CHIPS.

Good news for companies using LONWORKS technology.

The fact that Toshiba is the first company to ship the NEURON 3150™ CHIP in production quantities means different things to different companies.

For companies already using LONWORKS™ technology and tools from Echelon®, it means they can get their new generation of intelligent products to market very quickly.

And for companies that aren’t using LONWORKS technology and tools, it means they’re about to face some stiff competition.

LONWORKS technology lets you build control networks into products and environments for intelligent distributed control applications. Quickly and inexpensively. To produce products that are able to interoperate and perform more functions, more efficiently.

Each LONWORKS control network is made up of a series of “nodes” that communicate with each other. At the core of each node is one of two NEURON CHIPS from Toshiba: the NEURON 3120™ CHIP for applications where size and cost are most critical;
Bad news for companies that aren't.

and the NEURON 3150 CHIP with external memory support for more complex functions. Each node also contains an interface to communicate with other nodes over a wide range of standard media using the common LONTALK™ protocol. And to design those LONWORKS nodes into your products quickly and inexpensively, there's the PC-based LONBUILDER™ 2 Developer's Workbench.

More than 200 companies, many of them on the Fortune 100 list, are using LONBUILDER 2 Developer's Workbenches right now to design and develop more intelligent, more competitive products.

If you're one of them, congratulations. With Toshiba shipping NEURON CHIPS in quantity, you're that much closer to bringing your new products to market.

And if you're not already using LONWORKS technology and tools, don't give up. Toshiba and Echelon are ready to help you get started. Call the LONWORKS Hotline at 1-800-879-7566. Fax 1-415-856-6154. (From outside the U.S., please fax.) Or write Echelon Corporation, 4015 Miranda Ave., Palo Alto, CA 94304.
You haven't got any time to spare. So, make sure you’re using the most productive design tool for schematic entry. Once you’ve seen Tango-Schematic, we bet you'll agree it’s the very best PC-based, schematic capture package you can buy.

Superior Schematic Capture from the Leader in PCB Design.

Tango-Schematic is the front end of the popular Tango family of PC-based electronic design software. Users execute all common functions in the same way with Tango’s easy-to-use, “Windows™-like” interface. Tango takes an integrated approach to design, with sheet and component creation, post processing and hard copy generation, all executed from a single program. Our two-level menus, dialog boxes, on-line help and macro support make Tango quick to learn and simple to use.

Tango-Schematic gives you versatility and functionality with: support of homogeneous and heterogeneous components; library search and browses; autopanning and unlimited zoom levels; display of hidden pins to enable splitting power and ground nets; copy commands; and use of a unique snap-to-pin feature for guaranteed wire-to-component connections. Post-processing features include: forward and back annotation, design rule checking and sheet cleanup. Tango, EDIF 2.0, PSpice™, P-CAD™ and other popular net list formats are supported.

Tango-Schematic’s extensive device libraries are provided by SEDCO (specialists in creating electronic design libraries) and contain over 10,000 different symbols each verified for accuracy and each available in its commercial, true ANSI/IEEE and DeMorgan representation.

Make sure you're using the best tools available and experience the Tango difference. Call us toll free for more information or to request your free, functional evaluation package.
Combine C and assembler to program powerful DSP processors

Implementing a digital-signal-processing (DSP) algorithm on a powerful processor such as the AT&T DSP32C may seem intimidating. However, if you approach the task in a methodical manner and with the correct tools, the programming will be a straightforward exercise.

Engineers have traditionally programmed computationally demanding DSP algorithms in assembly language. Although DSP µPs' specialized architectures contribute to the chips' power, these architectures make the processors difficult to program in assembler. C compilers are generally available for current-generation DSP µPs, but the efficiency of the code they produce is well below that a skilled assembly-language programmer can obtain. By using the following common-sense, 3-stage approach to programming a DSP µP you can combine the advantages of both C and assembler.

DSP µPs share three characteristics (Ref 1). First, they are reduced-instruction-set-computer (RISC) processors—that is, each instruction takes one instruction cycle and the instruction set is irregular. Second, they carry out several operations in parallel. And third, they are pipelined—an instruction's execution takes several processor cycles.

The µP vendor will have development software for one or more computers—usually including the IBM PC. Development software should include a C compiler, a macro assembler, a linker, libraries of common functions, a software simulator, and copious documentation.

Many third parties manufacture DSP boards based on the currently available DSP µPs (Ref 2). Adding one of these to your setup provides an economical and immediately available test bed on which to try out your code.

Initially program in C

In the first stage, code your DSP algorithm in C while making no particular effort to obtain an efficient implementation. The straightforward manner in which you can code a mathematical description of an algorithm in C lets you concentrate on the important issues such as signal representation and buffering strategy. You should test your software as thoroughly as possible before proceeding to the next stage.

Here are some tips for the first stage:
- Use multiple source files and a make utility such as the following:

```c
Listing 1—Straightforward C implementation of speech-processing algorithm

/**************************************************************************
 //* Update the autocorrelation estimates. Rev 1.0 */
 /*

 /* time-shift, n given by n = (4*i + cycle), for values */
 /* of i from 'first_i' thru 'last_i' */

 void update_Exx(x, first_i, last_i, cycle)
 float x;
 short first_i, last_i, cycle;
 { 
 short i;
 for( i = first_i; i <= last_i; i++ )
 R[4*i+cycle] = ( GAMMA*R[i+cycle] ) + ( x*R[i] );
 }  */

/**************************************************************************/
```

EDN April 23, 1992 • 153
as Microsoft's Make. Multiple source files reduce compilation time, and a make utility ensures that the numerous compiler and linker parameters are correct or, at least, the same.

- Declare the return values of external functions. Functions you define in another source file can be a source of errors because the compiler will assume that these functions return integer values if you specify no return type.
- Use a lint program such as PClint. Lint is a type of C compiler that does not produce object code but checks for errors more comprehensively than a standard C compiler does. Lint performs strong type checking and also warns of code likely to be implementation dependent.
- Use static variables for easier debugging. C usually keeps variables on the stack. The C compiler adds a preamble to each function's executable code. The preamble allocates memory for stack variables when the function begins and releases stack memory on exit. Declaring a variable as static fixes it in memory.
- Ref 3, C Traps and Pitfalls, is particularly useful.

Interrupt routines

Your DSP software is likely to contain interrupt routines. You can write these routines in C if you follow this simple scheme. Write the interrupt routines as C functions that take no parameters and return no values. Then write an assembly-language interrupt-routine "shell" to call your C interrupt routines. The shell routine first switches to a new stack, saves registers if necessary, and then calls the appropriate C interrupt routine. (The DSP32C has shadow accumulators but no shadow registers. For more information on this DSP µP, see Ref 4.) When the C interrupt routine finishes, the shell restores the registers and stack and then executes the return-from-interrupt instruction.

Keep the following tips in mind when writing your interrupt routines. Do not share the stack between the main program and an interrupt routine. Because an interrupt can occur at any time, you cannot rely on the compiler's stack-usage conventions. Make no assumptions about the contents of registers when an interrupt routine runs. And be sure that the jump to the interrupt routine is an absolute jump rather than a jump relative to the current program counter.

Improve efficiency of working routines

In the second stage, you improve the efficiency of your program by rewriting working C routines. You should apply the usual methods of improving the efficiency of a C program.

Replace array accesses by equivalent operations that use pointers. Use registers to hold frequently accessed variables. Examine the assembly-language output from the compiler. By counting the number of instructions, you can determine where the processor is spending time and thus where to direct your optimizing efforts. Studying the compiler's output will also reveal that the C compiler produces more efficient code for some high-level constructs than for other, equivalent constructs.

Pure C code can be quite efficient. However, to achieve an efficiency comparable to that of assembly language, you must move on to the third stage. In this stage, you compile the C program from the second stage and then hand-optimize the assembly language of time-critical and time-intensive routines.

One form of hand optimization is replacing a critical C-language routine with a C-callable assembly-language function or an assembly-language macro. The macro causes the compiler to insert the macro's assembler code in the program wherever it encounters the macro. Such in-line macros are faster than the equivalent C-callable assembly-language functions but require more code.

Write the initial version of the macro (or function) by optimizing the assembler output from the C compiler. In general, this optimization will consist of deleting superfluous read operations and re-ordering some of the code.

You can obtain further speed increases by exploiting the DSP µP's special instructions. DSP µPs have instructions for particular DSP operations, for example, a finite-impulse-response (FIR) filter tap. You can also

Listing 2—More efficient C version of Listing 1’s algorithm

```c
void update_Rxx(float x, short first_i, last_i, cycle)
{
    static float *first_ptr, *last_ptr;
    register float *in_ptr, *out_ptr, *last_ptr;
    in_ptr = &R[(4*first_i) + cycle];
    last_ptr = &R[(4*last_i) + cycle];
    for (out_ptr = first_ptr; out_ptr <= last_ptr; )
    {
        *out_ptr = (*gamma) * *out_ptr + (x * *in_ptr);
        *in_ptr++;
        *out_ptr++;
    }
}
```
speed processing by exploiting the processor’s parallelism; in particular, increment pointers during the instructions that reference them.

To achieve maximum execution speed you must know when the processor inserts wait states. For example, the DSP32C can perform as many as four memory accesses during an instruction cycle. It inserts wait states during these memory accesses under two conditions: first, when accessing external memory that is not zero-wait-state memory and second, when making two successive accesses to the same physical memory.

You can easily categorize wait states arising from slow memory. Conflict wait states—wait states arising from the second condition—are more complex. You can determine the number of conflict wait states that occur while executing a section of code by using the software simulator. Using the simulator, you can investigate the effect of different memory configurations. One successful strategy for combating conflict wait states is arranging code, data, and coefficients in separate physical memories.

At the end of the third stage the resulting program will be as efficient as a well-written assembly-language implementation. The program, however, will be far more maintainable. And as a result of using this 3-stage approach, you will have learned the assembly language and characteristics of the DSP µP almost painlessly.

Programming the DSP32C in assembler

When you program the DSP32C in assembly language, three characteristics will become apparent: its RISC instruction set, the latencies arising from pipelining, and its parallelism (Ref 5).

The RISC instruction set has a particularly annoying omission: The only way to transfer a number between the floating-point and fixed-point execution units is via memory. Because of the effect of latencies, the time required to execute six instructions will elapse during such a transfer.

The DSP32C has many different latency effects because of the pipelined nature of the processor. The most important of these effects are the following: when the floating-point processor writes a value to memory, the value cannot be read until four instructions later; when the integer processor loads a register from memory, the next instruction cannot reference the register (except as the address of a write by the floating-point processor); and when the processor executes a branch instruction such as “if,” “call,” or “goto,” it also executes the subsequent instruction before the branch occurs.

To compare the efficiency of DSP code written in C with that of code written in assembler, examine these three implementations of a typical DSP algorithm. The algorithm is the Cox-Crochiere algorithm for speech-pitch estimation (Ref 6).

The Cox-Crochiere algorithm is an autocorrelation pitch detector structured for efficient implementation on a single DSP processor. The heart of the algorithm is the updating of 64 autocorrelation estimates. The algorithm updates each estimate every fourth sample according to the equation

\[R_m = \Gamma \times R_{m-4} + X \times X_{m-3} \]

where \(X_m \) is the Nth sample of a lowpass filtered version of the speech signal and \(R_m \) is the autocorrelation estimate at time N and time-shift M. The autocorrelation estimates are updated in a 4-sample cycle. For example, in cycle 0 the estimates for \(m = 28, 32, 36, \ldots, 120 \) are updated.

Listing 3—Hand-optimized version of the code produced by compiling Listing 2

```c
/* Update the autocorrelation estimates.Rev 2.0 */
/* This is an assembly language macro based on a hand optimized */
/* version of the compiler generated assembly language from the */
/* C. Rev 1.1 */
/* It updates the autocorrelation estimates for values of */
/* case-shift, n given by m=(4*l+cycle), for 'no_i' values */
/* of i from 'first_i' */

asm void update_Rxx(x, first_i, no_i, cycle, gamma) { 
  mem x; con first_i, no_i; mem cycle, gamma; lab LOOP: 
  r1e = first_m 
  r1e = r1 * 2 
  r3e = r1 * 2 
  r4e = r1 * 
  r2e = x 
  r3e = r3 + r4 
  r3e = r3 + r2 
  r1e = r1 + 2 
  r2e = r1 + 2 
  r2e = r1 
  r4e = r1 + r2 
  r16 = no_m 
  r16 = r16 - 2 */ set up loop counter */
  r1e = gamma 
  r2e = x 
  r15e = 16 /* r15 is increment register = 16 */
  a0 = r1 * r4 

  LOOP: r4++r15 = a1 = a0 + r2 * r3++ 
  if ( r16-- >=0 ) goto LOOP 
  a0 = r1 * r4 /* latent instruction ! */
  %error}

Listing 1 (pg 153) is a partial listing of a straightforward C implementation of the algorithm. The code is compact and easy to understand; however, the resulting assembly language has a total of 53 instructions within the loop.

Listing 2 shows a more efficient C version. Pointer
If larger PLDs & FPGAs such as Actel ACT™, AMD MACH™, Altera MAX™ and Xilinx LCAs™ are in your DESIGN/TEST future, ACUGEN® Software’s ATG products should be too!

The ATGEN® test generation software automatically generates high coverage functional test vectors for all types of PLDs including PALs®, GALs®, FPLAs, FPGAs, FPLSs, EPLDs and other architectures. Device support includes 150 JEDEC based models. Altera MAX, Actel ACT and Xilinx LCAs are supported with supplementary ACUGEN products.

Translation software is available to most ATE including GenRad, Hewlett-Packard, Logue-McDonald, MCT, Schlumberger, Teradyne, Zehntel and others.

Translation software is available to most ATE including GenRad, Hewlett-Packard, Logue-McDonald, MCT, Schlumberger, Teradyne, Zehntel and others.

ACUGEN® Software is a registered trademark of ACUGEN Software, Inc. All other trademarks are the property of their respective companies.

ACUGEN Software, Inc.
427-3 Amherst Street, Suite 391 • Nashua, NH 03063, USA • (603) 881-8821

CIRCLE NO. 85

AUDIO PRO II

Introducing...second generation CD quality, stereo hi-fidelity digital audio record/playback for PC-AT 386/486 or compatible. Now with DVI/CDD/CD-ROM audio compression up to 44.1 kHz.

Featuring...real time direct-to-disk data transfer...18 bit resolution...64x oversampling...22kHz audio response...0.005% THD...6.25 to 50 kHz programmable sample rate...92dB dynamic range...90dB S/N...plus 4:1 ADPCM compression.

For broadcast quality recording, editing and transmission in high-end entertainment systems, A/V presentations and interactive CD/DVI applications. Phone 1 (800) 338-4231 for details on the 2nd generation AUDIO PRO Model SK-15.

CIRCLE NO. 86

PROGRAMMING DSP PROCESSORS

operations have replaced the equivalent array accesses. Registers hold the pointers. The resulting assembly-language code has 11 instructions within the loop.

Listing 3 is a hand-optimized version of the code produced by compiling the C code in Listing 2. Taking advantage of the DSP μP’s special loop instruction, this version has only three instructions within the loop.

References


Authors’ biographies

Steve Denny is a programmer for the Defense and Scientific division of Data Sciences in Farnborough, UK. He programs in C and assembler, and his latest project has been an X-Window speech workstation. He obtained a masters in engineering (Hons) in microelectronics and software engineering from the University of Newcastle-upon-Tyne. Steve is a member of the IEE and in his spare time enjoys sports and classic cars.

Stephen J Roome is a senior consultant for Data Sciences. He performs systems analysis and design and does consulting, primarily in the area of DSP. He, too, has most recently worked on an X-Window speech-processing system. He obtained a bachelor’s degree (Hons) in physics from the Imperial College, London, and a masters in systems engineering and a doctorate in electrical engineering both from City University, London. Stephen is a member of the IEE and in his spare time enjoys squash, skiing, and theater.

Article Interest Quotient (Circle One)
High 476 Medium 477 Low 478
IN TODAY’S CROWDED MARKET, YOU CAN’T FIND THE IDEAL LOGIC COMPANY WITHOUT ASKING A FEW QUESTIONS.

"WHERE ARE WE GOING TO GET AN FPGA WITH THAT KIND OF SPEED?"
"GATE ARRAYS ARE TOO RISKY, AND PLD’S DON’T CUT IT. NOW WHAT?"
"WHICH CASE SYSTEMS DOES THE DEVELOPMENT SUPPORT?"
"THIS DESIGN IS GOING TO CHANGE. I JUST KNOW IT. HOW DO I KEEP MY OPTIONS OPEN?"
"WHEN CAN I GET FIFTY THOUSAND OF THESE?"
"WHO HAS THE BROADEST RANGE OF PROGRAMMABLE SOLUTIONS?"
"DO THEY HAVE ANYBODY LOCALLY WHO’ll SUPPORT US?"
"WE HAVE TO GET THIS OUT THE DOOR YESTERDAY. CAN THIS HELP US?"
"CAN I GET FPGA PACKAGES?"
"WHY SHOULD I BUILD A GATE ARRAY IN A FACTORY WHEN I CAN BUILD AN FPGA ON MY DESK?"
"WHOSE DEVICES HAVE ENOUGH I/O’S FOR THIS JOB?"
"HOW DO I KNOW WHICH PLD IS THE BEST ONE—BEFORE I START MY DESIGN?"
"OK, THIS IS GOOD. WHAT DO YOU GUYS DO FOR AN ENCORE?"
"KIND OF SPEED?"
"GATE ARRAYS ARE TOO RISKY, AND PLD’S DON’T CUT IT. NOW WHAT?"
"WHICH CASE SYSTEMS DOES THE DEVELOPMENT SUPPORT?"
"THIS DESIGN IS GOING TO CHANGE. I JUST KNOW IT. HOW DO I KEEP MY OPTIONS OPEN?"
"WHEN CAN I GET FIFTY THOUSAND OF THESE?"
"WHO HAS THE BROADEST RANGE OF PROGRAMMABLE SOLUTIONS?"
"DO THEY HAVE ANYBODY LOCALLY WHO’ll SUPPORT US?"
"WE HAVE TO GET THIS OUT THE DOOR YESTERDAY. CAN THIS HELP US?"
"CAN I GET FPGA PACKAGES?"
"WHY SHOULD I BUILD A GATE ARRAY IN A FACTORY WHEN I CAN BUILD AN FPGA ON MY DESK?"
"WHOSE DEVICES HAVE ENOUGH I/O’S FOR THIS JOB?"
"HOW DO I KNOW WHICH PLD IS THE BEST ONE—BEFORE I START MY DESIGN?"
"OK, THIS IS GOOD. WHAT DO YOU GUYS DO FOR AN ENCORE?"
"WHAT KIND OF APPLICATION SUPPORT IS THERE?"
"WHAT’S THE TYPICAL DEVELOPMENT CYCLE FOR THIS APPLICATION?"
"JUST HOW RISKY IS THIS APPROACH?"
"I KNOW PROGRAMMABLE LOGIC WILL CUT DESIGN TIME, BUT WHAT ABOUT PRODUCTION COSTS?"
"WHEN CAN I GET FIFTY THOUSAND OF THESE?"
"WHO HAS THE BROADEST RANGE OF PROGRAMMABLE SOLUTIONS?"
"DO THEY HAVE ANYBODY LOCALLY WHO’ll SUPPORT US?"
"WE HAVE TO GET THIS OUT THE DOOR YESTERDAY. CAN THIS HELP US?"
"CAN I GET FPGA PACKAGES?"
"WHY SHOULD I BUILD A GATE ARRAY IN A FACTORY WHEN I CAN BUILD AN FPGA ON MY DESK?"
"WHOSE DEVICES HAVE ENOUGH I/O’S FOR THIS JOB?"
"HOW DO I KNOW WHICH PLD IS THE BEST ONE—BEFORE I START MY DESIGN?"
"OK, THIS IS GOOD. WHAT DO YOU GUYS DO FOR AN ENCORE?"
"WHAT KIND OF APPLICATION SUPPORT IS THERE?"
"WHAT’S THE TYPICAL DEVELOPMENT CYCLE FOR THIS APPLICATION?"
"JUST HOW RISKY IS THIS APPROACH?"
"I KNOW PROGRAMMABLE LOGIC WILL CUT DESIGN TIME, BUT WHAT ABOUT PRODUCTION COSTS?"
"WHEN CAN I GET FIFTY THOUSAND OF THESE?"
"WHO HAS THE BROADEST RANGE OF PROGRAMMABLE SOLUTIONS?"
"DO THEY HAVE ANYBODY LOCALLY WHO’ll SUPPORT US?"
"WE HAVE TO GET THIS OUT THE DOOR YESTERDAY. CAN THIS HELP US?"
"CAN I GET FPGA PACKAGES?"
On that great highway of electronic system design, are you still trying to lumber along in the slow lane behind a load of discrete logic?

Are you maybe jammed up by a bunch of little PLDs?

Or worse yet, stuck in the parking lot of the gate array foundry, wondering how you got there?

Well, just consider this your invitation to move into the fast lane of programmable logic. From the company that owns it. Xilinx.

THE MOST ALTERNATE ROUTES.

Our FPGAs offer the best of both worlds: the flexibility and instant gratification of programmable logic, with the speed and density of gate arrays. But with none of the penalties.

And nobody can offer you more FPGAs than we can.

Our 2000 family, introduced in 1985, has been cruising down the cost curve ever since, with some devices now under $10.

The 3000 family boosted FPGA density to 9,000 gates.

Today, our third generation XC4000 family offers a versatile architecture, on-chip RAM, fully automatic design implementation, built-in system functions, and devices that'll someday break the 20,000 gate barrier.

These powerhouses are joined by the high speed XC7200 family from our EPLD division.

Along with more than 250 different packaging and temperature options to support the broadest possible range of applications.
Now that you can go this fast, how far would you like to go?

<table>
<thead>
<tr>
<th>Speed in MHz</th>
<th>1992</th>
<th>1993</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 bit Counter</td>
<td>95 105 90</td>
<td>115 125 50</td>
</tr>
<tr>
<td>16 bit L/D Counter</td>
<td>25 30 40</td>
<td>30 36 50</td>
</tr>
<tr>
<td>34 bit Accumulator</td>
<td>16 31 17</td>
<td>20 29 20</td>
</tr>
<tr>
<td>34 bit Adder</td>
<td>16 31 17</td>
<td>20 29 20</td>
</tr>
<tr>
<td>16 ch. 32 bit DMA</td>
<td>na 20 na</td>
<td>na 25 na</td>
</tr>
</tbody>
</table>

Feeling the need for speed? We’re just getting revved up.

**THERE IS NO SPEED LIMIT.**

Today, with system speeds up to 50 MHz, and densities up to 10,000 gates, there are very few limits to what you can do with Xilinx programmable logic.

A variety of improvements help us deliver this performance boost: integrated system features on chip, for instance, and a sub-micron manufacturing process are just two.

How much faster can you get? Just hang on and see.

**GO A LOT FARTHER, FOR A LOT LESS, WITH XILINX.**

High volume production does wonders for the price of our devices.

Considering we ship ten times more FPGAs than all our competition combined, it’s no shock that we’re the lowest cost FPGA producer. And those prices are only going to get better.

We also save you money by offering the broadest workstation platform support, and the broadest CAE system compatibility. So you can go with us without having to reinvent, or reinvest in, a new set of wheels.

It’s all part of a company-wide plan to make Xilinx your programmable logic company. And put you in the driver’s seat.

Besides pushing speed, density and costs, we’re also driving advancements in packaging, including the first programmable logic in QFPs.

**Feel the need for speed? We’re just getting revved up.**
Design and production schedules have never been tighter. Systems have never been more complex. You need more options for creativity, and more forgiveness in the design cycle, without paying the usual time or cost penalties.

Time has become so compressed, hardware and software are being engineered concurrently. Often, there isn't even time for a prototype. What do you do? Just keep reading.

LOGIC FOR THE 90's.
AND BEYOND.

The programmable logic solutions from Xilinx were made for the way you have to design logic today. And down the road.

For starters, there's no NRE. Your costs going in are low, and they are going to get lower every day.

Our devices are infinitely reprogrammable, even in the system, so you can refine your design until it hums.

Later on, adding new capabilities is just as easy.

And with our short development cycle (at least 15 weeks shorter than a gate array), you're not waiting for production quantities.

You can get them as fast as you like.
WHICH WAY IS THE BEST WAY TO GET THERE?

Don't worry about your inventory, either. Our devices are standard parts, fully tested (so you don't have to write test vector number one), and they'll keep until you're ready.

And our pin-compatible Hardwire Gate Array makes migrating to high volumes automatic—no test vectors, no waiting, no pain.

**XILINX, THE SOFTWARE COMPANY.**

Our XACT development system never stops getting better. It's push-button-automatic, sure, but it's also powerful, so you can go as deep into your design as you care to.

We've also added more libraries, ABEL support, more user control, user-defined hard macros, more new 3rd party interfaces, more efficient place-and-route, and just plain more. In fact, benchmark shows our new place-and-route (v.3.2) delivers a 30 to 40% improvement in device utilization.

And a 25% improvement in performance.

All of which make our XACT system easier than ever to live with. But we don't intend to rest on our disks. We're building more intelligence into the system everyday, with powerful new features like deadline timing, a floor planner, and a hot, very smart design manager on the way.

You see, our goal is to build a development system that practically runs itself, and produces perfect designs in record time.

That alone is reason enough to go with us. (The fact we're driving this industry doesn't hurt either.)
The value of timely market entry is no longer incalculable. Research on the subject shows that a six-month delay in getting to market reduces product profitability by a third over its life cycle.

As if that weren't daunting enough, consider this. Rapidly evolving technologies reward quick product development, but tend to accelerate product obsolescence. So how do you achieve the first without getting bumped off by the second?

GET TO MARKET FIRST, THEN STAY THERE.
The old saying is, “the view only changes for the lead dog.”

Well, when you put your logic on a Xilinx device, here’s what the leader’s view looks like.

First of all, no one can help you roll out your product quicker than we can. Our hardware and software were designed from the beginning for just that purpose.

Once you’re out in the market, then the fun really starts. You can respond to changing market conditions and customer’s needs almost as soon as you learn about them.

For example, our FPGAs are even reprogrammable in the system, so you can produce new models with different feature sets just by modifying the design—a task our software makes virtually automatic—and reloading via EPROM, disk, or telephone. And what new models they can be.

OUR IMPROVEMENTS, YOUR INNOVATIONS.
We’re continually pushing to deliver denser, faster, smaller,
more highly integrated devices.

Likewise, our software gives you more and more efficient device utilization, and as a result, better performance.

Together they let you build new systems that are smaller, lighter, faster, more reliable, and yet pack more features than previous models.

And still hold the line on costs. With all that going for you, you won’t just get to market. You’ll be the market.

You may not be able to buy time, but you can certainly do the next best thing. You can buy Xilinx and save time. Almost four months worth, compared to using a conventional gate array.

Before Xilinx, this board was crawling with chips. We reduced chip count by 80%, power consumption by 75%, and cut out two board layers. That’s what we call a good shrink.

Before Xilinx, this board was crawling with chips. We reduced chip count by 80%, power consumption by 75%, and cut out two board layers. That’s what we call a good shrink.

GO WITH SOMEONE WHO CAN HELP YOU GET THERE.

Because no one has a broader product line, you can get the right part, at the right time, build the right design, and refine it without risk.

What’s more, you’ll find our prices will continue to drop as our volume continues to increase. Which it does everyday, as more and more companies discover the benefits of our approach.

An approach that includes the benefits of lower costs, better integration, more speed, and less risk, all from one source. Xilinx.

There’s too much at stake to go any other way.
When you go with Xilinx, what do you get?

Software so automated it can shrink a development cycle to less than a starting employee's vacation. The fastest, densest, most cost-efficient devices. And support from the league-leader in programmable logic.

THE MOST EXPERIENCED PROGRAMMABLE LOGIC.

In all modesty, we know more about FPGAs than anybody. After all, we invented them.

We've also sold more than 13 million devices, and more than 12,000 development systems.

So our staff of FAEs have more experience designing with complex PLDs than any other single group in the industry. And when you go with us, they're with you.

THE LOGIC OF OUR APPROACH IS INESCAPABLE.

We're not burdened by expensive fabs, so we can invest where it really counts: in device improvements.

We have the largest software team in programmable logic—half of our total R&D staff. Our goal is to automate even the toughest designs, till the process becomes as quick and painless as possible.

We'll also continue to push the industry in device speed and density.

After all, we're in the best position to do that—our R&D budget is bigger than most of our competitor's revenues.

So find out how much we can help. Call our 24-hour information hotline at 800-231-3386 for the latest product literature and the name of the Xilinx representative nearest you. We'll take it from there. But do it soon. Because these days, getting ahead is the only way to go.
Ada and generic FFT
generate routines
tailored to your needs

Fred H Carlin, Consulting Engineer

Ada's "instantiation" of generic packages—essentially generating application-specific code from templates by filling in parameters—makes customizing an FFT routine as easy as dimensioning an array.

A generic FFT (fast Fourier transform) written in Ada is easy to customize for specific applications. Ada performs the customization itself; its "instantiation" of generic "packages" produces code with properly sized arrays and with appropriate values for array limits.

Ada's "generic" mechanism eliminates rewriting and recompiling routines when requirements call for changes in array sizes. Using a generic package as a template, the Ada compiler generates new code tailored to the size you specify. If you specify multiple instantiations of a package, a good compiler will even make the different instantiations use common code to reduce overall program size.

Listings 1 through 5 are Ada routines that perform an in-place FFT; they include a sample-calling routine and a minimal complex-number package. Although the routines are in Ada, you can translate them into other languages. Because Ada code is easy to read and maintain, even programmers inexperienced in Ada should find the routines fairly easy to understand.

Two of the listings are program "specifications": Listing 1 shows the complex-number package; Listing 3 shows the generic FFT. An Ada program specification is a kind of contract that specifies what must be in the "body" of the program unit. (Listing 2 is the body of the complex-number routine; Listing 4 is the body of the generic FFT.) A specification states what subprograms, data types, and variables are available. By requiring designers to explicitly specify a program package's structure, a specification encourages top-down design and makes large projects easier to divide among several programmers.

The complex-number package shown is adequate just for the FFT program; it does not include operations such as root, power, magnitude, and argument of complex numbers. The package declares a "private" data type called complex, the details of which are hidden from programs that use the package. By hiding this information, Ada guarantees that programs don't rely on these internal details and thus are not vulnerable to changes in any future implementations of the complex-number package.

The only operations that are available to Ada private data types are assignment (=) and tests for equality (= and /=). You can, however, define operators for addition (+), subtraction (−), multiplication (×), and absolute value or magnitude (abs). As Listing 1 shows, the complex-number package defines operators that accept complex num-
ADA AND GENERIC FFTs

ers and return complex numbers. Thus, you can write

\[ X := A + B; \]

where \( A, B, \) and \( X \) are all complex numbers.

The package defines two multiplier operators. The first allows scaling of a complex number, and the other multiplies two complex numbers together. The Ada compiler can always identify which "*" routine is intended because the routines' "profiles" are different; the first requires two complex numbers, the second requires a complex number on the left and a floating-point number on the right.

The rest of the specification gives the details of the complex type to the compiler. It instructs the compiler to implement the complex type as a record of two floating-point numbers, \( Re \) (real) and \( Im \) (imaginary), and to initialize this complex number to zero. Although required by the compiler, these details are in the private section of the specification and, thus, are invisible to other programs that use the complex-number package.

Listing 2, the body of the complex-number package, implements the subroutines and other details called for in the package specification. Because the body implements the specification, it can (and usually must) make use of the implementation details contained in the specification's private section.

Listing 3 shows the program specification for the Fourier package. This package utilizes the complex-number package, \( \text{cnwm} \) (from Listing 1), and is itself a generic package. This generic package's formal parameter is the integer \( N \), which specifies the size of the FFT array you want. The compiler will use the specification and body of the Fourier package as a template to produce a section of code tailored for this size.

The package specification for Fourier defines a new data type called \( \text{FFT	extunderscore type} \), an array of \( N \) elements indexed by an integer whose range is 0 to \( N - 1 \). The array elements are complex numbers, as defined by the package \( \text{cnwm} \). Because this type definition is in the visible part of \( \text{cnwm} \), subprograms using the package can access the elements directly. The package also defines an exception type called \( \text{FFT	extunderscore error} \). This exception will be raised (or activated) when the FFT program detects an error condition.

Notice in Listing 3 that procedure \( \text{FFT} \) has an

---

**Listing 2—Complex-number procedures**

```
with math_lib; use math_lib; -- Use floating point package
with text_io; use text_io; -- Use text in/out routines

package body Cnum is

function "+" (A, B: in complex) return complex is
 return (A.Re + B.Re, A.Im + B.Im);
end "+";

function "-" (A, B: in complex) return complex is
 return (A.Re - B.Re, A.Im - B.Im);
end "-";

function "*" (A: in complex; B: in float) return complex is
 return (A.Re * B, A.Im * B);
end "*";

function "**" (A: in complex; B: in float) return complex is
 return (A.Re * B.Re - A.Im * B.Im, A.Re * B.Im + A.Im * B.Re);
end "**";

function "abs" (x: in complex) return float is
 return sqrt (x.Re * x.Re + x.Im * x.Im);
end "abs";
```

---

**Listing 3—Fourier package**

```
package Fourier is

generic
 N: integer; -- Formal parameter

package body Fourier is

procedure put (x: in complex) is
 use cnum;
 put (x.Re, 3, 3, 0);
 put ('x', 1, 0);
 put (x.Im, 3, 3, 0);
end put;
```

---
FFT_type as both an input and output parameter and a Boolean type as an input parameter. The Boolean type specifies either a forward or an inverse transform; its default value is FALSE.

Listing 4, the body of the Fourier package, is the section of code that implements the contract contained in the specification. The body of Fourier contains the code for the subprograms bit_reverse, max_magnitude, magnitude_plot, list_values, and FFT. High-level details of all the subprograms except bit_reverse are in the specification of Fourier; thus, all the subprograms except bit_reverse are accessible
ADA AND GENERIC FFTs

outside the Fourier body. Subprogram bit_reverse is available only to code in the body of Fourier that follows the subprogram.

The end of Listing 4 contains a small begin-end block. This unnamed block executes just once, on startup. It first checks to see that \( N \) is a power of two and then proceeds to build a cosine table. If \( N \) is not a power of two, the exception \( FFT\_error \) is raised and program control returns to the calling program.

Putting it all together

The main calling routine is \( ftest \), shown in Listing 5. This program creates a version of the Fourier package, \( FT \), that generates 16-point transforms. Specific versions such as this are termed instantiations. The routine \( ftest \) then creates a 25% pulse wave of the complex array \( X \). It then copies the array to \( Y \), transforms the \( Y \) array, and presents a selection menu to the operator.

The "elaboration" of \( FT \) is Ada terminology for the compiler's process of allocating data areas for \( FT \), \( X \), and \( Y \). If the exception \( FFT\_error \) occurs during elaboration, then program control returns to the program that called \( ftest \), and this calling program has the option of intercepting the exception and executing some error-recovery code. In our example, however, the operating system called \( ftest \), so the operating system will report an error.

An Ada implementation of the FFT makes it easy to create a working prototype. In addition, Ada's package structure provides for systematic program maintenance, so it is easy to upgrade program performance in an orderly way. For example, if you program a more efficient bit-reversal algorithm or get a special piece of hardware to provide this function, then you need only replace the subroutine in the body of Fourier (Listing 4) and recompile only the Fourier body. Similarly, if you program a more efficient transform (Listing 5 is mostly a demonstration version), then all you need to do is replace the subroutine \( FFT \) in the body of Fourier, recompile the body, and relink the program.

If, however, you should decide that complex numbers are better represented in polar format (because, for example, you have a new piece of hardware), then you will need to change both the specification and the body of \( cnum \), the complex-number package. And, because you will need to recompile \( cnum \)'s specification, you must also recompile everything that depends upon the specification—including Fourier's specification (and therefore its body, too) and \( ftest \). However, as long as the visible (nonprivate) part of \( cnum \)'s specification remains unchanged and the body of \( cnum \) properly implements the specification's functions and procedures, then neither Fourier nor \( ftest \) need be changed.

Author's biography

Fred H Carlin, a consulting engineer in Goleta, CA, designs hardware and software for real-time data-acquisition and-processing systems. He has developed systems for medical diagnostics, environmental monitoring, and industrial control. Fred holds PhD and MS degrees from the University of California (Santa Barbara), an MBA from California State University (Fullerton), and a BS from California State Polytechnic (Pomona). He is a member of the IEEE and the Association for Computing Machinery. In his spare time, Fred enjoys sailing and navigating.

Article Interest Quotient (Circle One)

High 491 Medium 492 Low 493
EPSON®
IC MEMORY CARDS

JEIDA/PCMCIA
SRAM 64K to 2M
OTP EPROM 64K to 2M
Flash EEPROM 64K to 1M
Mask ROM 256K to 8M
EEPROM 16K to 32kB

CARD EDGE
SRAM 8K to 1M
OTP EPROM 32K to 1M
Flash EEPROM 128K to 1M
Mask ROM 128K to 4M
EEPROM 8K to 32kB

Call your sales rep today.

EPSON AMERICA, INC.
Component Sales Department Telephone: 213/781-6300
EPSON Sales Representative: AL-GA-TN-NC: Condor Components 209/775-8663
CA-So, Baggs Electronics 714/957-3557 CO-UT WS, Regan Mfg 303-426-8008
FL, Dyne-A-Mark 305/771-6620 IL-WI LTD Technologies 708-775-3900
IA-KY-MO-IL Clocks 319/721-1492 MA-NH-CT Rossen Assoc. 617/946-3730
MI-CT-Southen Mass. Assoc. 508/429-1900 MN-Electro Mark 612/444-5850
NJ-JMF Sales 201/725-8000 NY Icacom Sales 716/366-1460 METRO-NY Nikrom 516/939-6071
OH-MI-JD Rubi Assoc. 716/934-4404 OH-WA Madison 503/266-8260 PA, Omega Sales 215/944-4000 TX-OK Compound Tech. 214/863-8681

CIRCLE NO. 87
Linear Technology delivers 12 bit samples faster and cheaper using less power and less board space.

The new LTC1272 is a 3μsec, 12 bit sampling ADC that blows the doors off non-sampling 7572 and 574 type parts and their sampling upgrades. In the 7572 pinout, it samples at 250kHz and typically draws only 75mW from a single 5V supply.

And you don't need the extra errors, board space, power and cost of an external sample and hold! With on-chip sample and hold, the LTC1272 delivers a typical 450nsec acquisition time and 72dB typical signal to noise + distortion. The linearity, including the sample and hold errors, is ±0.5 LSB.

With on-board voltage reference, the LTC1272 is a complete, sampling ADC solution. Get it now in your choice of 3, 5, and 8μsec speeds for military and commercial temperature grade applications. Packaging is plastic DIP, SO and hermetic. For details contact Linear Technology Corporation, 1630 McCarthy Blvd., Milpitas, CA 95035. Or call 800-637-5545.
Paralleled amplifiers drive loads quietly

Moshe Gerstenhaber and Mark Murphy,
Analog Devices Semiconductor, Wilmington, MA

By paralleling amplifiers, you can increase load drive while keeping output impedance low, reducing noise voltage. Fig 1a shows the classic stacked-amplifier circuit. This configuration halves noise and quadruples load drive. However, this approach has some obvious weaknesses:

- You need to set the correct gain for every amplifier and add ballast resistors to each output.
- The input range is limited because of the inherent offset of any of the amplifiers.
- The output impedance must be high to prevent any of the amplifiers from short circuiting.

The circuit in Fig 1b has half the noise voltage of an individual amplifier, quadruples the load drive, reduces the component count from twelve resistors to three, and has a gain-bandwidth product of 1 GHz. Although the topology in Fig 1b is generally applicable to all externally compensated amplifiers, Fig 1b's particular components suit video applications.

The circuit increases drive by paralleling outputs. To understand how the circuit reduces noise, let the voltage noise, referred to the input, of the individual amplifiers be $V_{N1}$, $V_{N2}$, $V_{N3}$, and $V_{N4}$, and the total noise voltage be $V_N$. Because the circuit connects all inputs—inverting to inverting and noninverting to noninverting—and high-impedance nodes (pin 5's),

$$(V_N - V_{N1})g_{m1} + (V_N - V_{N2})g_{m2} + (V_N - V_{N3})g_{m3} + (V_N - V_{N4})g_{m4} = 0$$

or, $V_N = \frac{1}{4}(V_{N1} + V_{N2} + V_{N3} + V_{N4})$.

But because the noise voltage of the amplifiers is not correlated, and the noise-voltage spectral density for each amplifier is the same,

$$V_N = \frac{1}{4}\sqrt{4V_{N1}}^2$$

or, $V_N = V_{N1}/2$.

This result also implies that all noncorrelated parameters such as input-offset voltage, input-offset voltage drift, CMRR, and PSRR, will also approach their true mean values, thus reducing effects arising from the variability of the devices.

To Vote For This Design, Circle No. 739

Fig 1—Paralleling amplifiers (b) increases total output drive and reduces output noise, surpassing the stacked approach (a).
Op-amp model includes \( \frac{1}{f} \) noise

Richard Faehnrich, Bio-Imaging Research Inc, Lincolnshire, IL

Extracting the shot and flicker noise of a Spice diode model is an easy way to model \( \frac{1}{f} \) noise. This method is superior to the usual trick of using the Johnson noise of a resistor inserted into a circuit via a dependent voltage or current source. The problem with the usual trick is that Johnson noise density is flat over frequency. Not including the \( \frac{1}{f} \) noise can result in serious underestimates of the total noise that an amplifier will produce.

Fig 1 shows a 1-mA current source biasing a diode. C1 ac-couples the diode’s noise to R1 so that the diode’s dc voltage has no effect on the op-amp model. The resistor has a large value so that its inherent noise will not be significant. A voltage-controlled source, E1, having gain G, then injects the noise into the appropriate location in the amplifier circuit. Listing 1 is a Spice model of this circuit.

The diode’s model parameters are: \( IS=1E-14, N=1, RS=0, AREA=1, T=300K, Vt=k\cdot T/q=0.0261 \). This diode model generates shot- and flicker-noise currents according to

\[
i_N = 2q \cdot ID + KF \cdot \frac{ID^{AV}}{f}
\]

where \( q \) is the electron charge, \( ID \) is the diode’s bias current, \( KF \) is the flicker-noise coefficient, \( AF \) is the flicker-noise exponent, and \( f \) is the frequency.

At the dependent voltage source, E1, the noise voltage, \( V_o \), arising from the shot-noise component is

\[
V_o = GV_1 \sqrt{2q/ID}.
\]

Solving for \( G \), controlled-source gain, yields

\[
G = \frac{V_o}{V_1 \sqrt{2q}} = (2.149 \times 10^9) V_o.
\]

Setting the flicker exponent, \( AF = 1 \), the noise voltage arising from the flicker component is

\[
V_o = GV_1 \sqrt{KF/ID}.
\]

Solving for \( KF \) yields

\[
KF = \frac{V_o^2 \cdot ID}{V_1^2 \cdot G^2} = (1.467) \frac{V_o^2 \cdot f}{G^2}.
\]

**Listing 1—Noise-source Spice model**

```
OPN.CIR - NOISE MODEL WITH 1/F NOISE
*
E1 1 0 11 0 43.0
RD 1 0 1E12
* INPUT NOISE VOLTAGE
I1 0 10 DC 0.001
D1 0 0 DVOLT
C1 10 11 100UF
R1 11 0 1E12
*
* DIODE MODEL
.MODEL DVOLT D (AF=1 KF=3.174E-18)
* .AC DEC 10
.NOISE V(1) I1
.PRINT NOISE ONOISE
.END
```

At the dependent voltage source, E1, the noise voltage, \( V_o \), arising from the shot-noise component is

\[
V_o = GV_1 \sqrt{2q/ID}.
\]

**Fig 1**—This simple Spice model ac-couples the noise of a diode model to a voltage-controlled voltage source to generate accurate noise voltages.

**Fig 2**—Adding properly scaled noise sources to this op-amp Spice model yields noise performance that closely matches the real device’s data-book values.
The opportunity for automated, low-cost assembly is a key benefit of surface-mount technology but is often wiped out by the high price of surface-mount components. Now Mini-Circuits offers a new series of mixers to meet the pricing and quality demands of SMT...only $3.30 in 1,000 quantity ($3.95 in quantity of 10)...lower than most conventionally-packaged mixers.

The Ultra-Rel™ SCM-series spans 1 to 2500 MHz and is housed in a rugged non-hermetic 0.38 by 0.75 by 0.2 in. high (max. dimensions) plastic/ceramic package. Spacing between connections is 0.2 in.

Each SCM is built to meet severe environmental stresses including mechanical shock/vibration as well as temperature shock. Operating and temperature storage range is -55° to +100°C. Ultra-Rel™ SCM mixers come with a five-year guarantee, ready for off-the-shelf delivery, and available in tape-and-reel format (500 qty, 32 mm).

Unprecedented 4.5 sigma unit-to-unit repeatability is also guaranteed, meaning units ordered today and next year will provide performance identical to those delivered for your initial prototype design.

When you think SMT for low-cost production, think of Mini-Circuits' low-cost Ultra-Rel™ SCM mixers.
Listing 2 is a Spice model of the OP-02 amplifier circuit in Fig 2, which incorporates the noise source of Fig 1 and Listing 1. Choosing 20 nV/\sqrt{Hz} at 1 kHz for an input-noise voltage value (which is far above the \( \frac{1}{2} \) corner frequency where the noise density is flat over frequency), \( G \) is

\[
G = (2.149 \times 10^6) \times (20 \times 10^{-9}) = 43.0
\]

Next, for frequencies below the circuit's \( \frac{1}{2} \) corner frequency (where the \( \frac{1}{2} \) noise is much greater than the shot noise), choosing a value of 200 nV/\sqrt{Hz} at 0.1 Hz yields a flicker-noise coefficient, \( K_F \), of

\[
K_F = \frac{(200 \times 10^{-9}) \times (0.1)}{(43.0)^2} = 3.174 \times 10^{-18}
\]

The results of a Spice simulation of Fig 2's model, using the values above for the noise sources, closely match the noise data given in the OOP-2's manual, validating the choices of noise-voltage values.

If you need noise currents for your application, simply substitute voltage-controlled current sources for the voltage-controlled voltage sources. You can get a copy of Listing 1 and Listing 2, as well as test data, from the EDN BBS. EDN BBS /DL_SIG #1121

Amplifier neutralizes ground leakage
Leonard Schupak, Navitech Consulting, Irvine, CA

For critical applications such as medical apparatus connected to patients, the circuit in Fig 1 will neutralize, or absorb, several milliamperes of leakage current over a frequency range of 10 Hz to 200 kHz. The circuit will work with single-phase or 3-phase power systems, with or without a neutral connection (ground-leakage current flows through the protective ground, not the neutral). This circuit can bring your designs into compliance with UL-544 or other stringent safety regulations.

The capacitors \( C_{1,1} \) and \( C_{1,2} \) in Fig 1 represent paths for ground-leakage current, \( I_l \). Typically, various elements, such as insulated heat sinks, capacitively couple ground-leakage currents to the chassis ground.

The active circuitry begins with a ground-leakage current-sense transformer, \( T_1 \), having either one or two single-turn primaries, which is ac-coupled to an op amp, \( I_C^1, I_C^2 \), a precision bilateral constant-current source, converts \( I_C^1 \)'s output to a current equal and opposite to the ground-leakage current. The circuit sums this opposing current into the protective ground, canceling the leakage current.
Asahi Kasei Microsystem has developed two advanced products that pack crispness into image scanning. The AK8406 Shading Correction LSI. And the AK8428 Image Processing LSI. Together, they extend gray-scale shading correction to 256 halftones — remarkable performance for image scanners and facsimile machines, too.

Other Outstanding Products for Image Processing

<table>
<thead>
<tr>
<th>Product</th>
<th>Performance/function</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK8405</td>
<td>Shading correction LSI 16 levels of gray scale • 2M pix/sec.</td>
</tr>
<tr>
<td>AK8424</td>
<td>Image processing LSI 16 levels of gray scale • Dithering</td>
</tr>
<tr>
<td>AK8426</td>
<td>Image processing LSI 16 levels of gray scale • Distinction between characters and picture elements • Edge emphasement • Reduction • Sensor clock generation</td>
</tr>
</tbody>
</table>

Asahi Kasei Microsystems Co., Ltd.
Yoyogi Community Bldg. 3F, 11-2, Yoyogi 1-chome, Shibuya-ku, Tokyo 151, Japan
Phone: (03) 3320-2062 / Fax: (03) 3320-2072/73

(U.S.A)
CA (NORTH) — PINNACLE SALES (Phone 408-249-7400/Fax 408-249-5129)
CA (SOUTH) — SOLUTECH (Phone 714-374-0130/Fax 714-374-0131)
IL, WI, IA, IN, TX, OK, IW — RICHMAR ELECTRONICS (IL—Phone 708-968-0118/Fax 708-968-0197), (TX—Phone 214-424-8388/Fax 214-424-9170)
NC, SC, GA, FL, AL, TN, MS, AR, LA — CARTWRIGHT & BEAN (GA—Phone 404-368-0160/Fax 404-368-0125), (FL—Phone 407-889-9100/Fax 407-889-2168)
New York — Interactive Component Sales (Phone 315-445-9600/Fax 315-445-8700)

(EUROPE)
DIP ELECTRONICS LTD. — Sheraton House Castle Park, Cambridge CB3, OX, U.K. (Phone (44)-223-462244/Fax: (44)-223-463716)
DIP ELECTRONICS DIPEX AB — Box 15046 Haslomsvagen 28, 104 65, Stockholm Sweden (Phone (46)-8-449190/Fax: (46)-8-430047)
Contact in France: Mr. Laumonier — (Phone (33)-1-69-01-68-82/Fax (33)-1-64-98-86-26)
BECK GMBH & CO. ELEKTRONIK BAUELEMENTE KG — Eltersdorfer Str. 7, 8500 Nürnberg 90 Germany (Phone (49)-911-3405-0/Fax (49)-911-340528)
HERIBER LEHNER OPTO-UND SPEZIAL ELEKTRONIK GMBH — Astbrook 4-6, D2351 Wiemersdorf, Germany (Phone (49)-4192-5007-0/Fax (49)-4192-5007-11)
ALTRAC-AG — Mühlthaldeinstrasse 6, CH-8953, Dietikon, Switzerland (Phone (41)-1-741-4644/Fax (41)-1-741-1690)

CIRCLE NO. 90
In Fig 1, the opposing current feeds through a second primary of $T_1$. This arrangement is for production testing. If you do not need production testing, you can omit this second-primary connection. The first primary of $T_1$ must be low impedance and the sole connection between your equipment's chassis ground and the power system's protective ground. Be sure that all your equipment's leakage current flows through the first primary. Also, wrap the transformer's turns tightly to minimize leakage effects.

The accuracy of cancellation depends on the balance of the current source's bridge components. Error manifests itself as a finite output impedance (Ref 1). $R_o$ allows you to adjust the bridge's balance.

The transformer in Fig 1 is a 10:1 step-up unit. This step-up ratio is an excellent compromise between transformer and amplifier requirements. The input impedance at the summing junction, and its reflected primary component, yield reasonable values, whereas the large-value secondary minimizes leakage effects. A lower-cost circuit could use a small toroid core and a single-turn primary and single-turn secondary. In this case, the amplifier can have reduced gain because of the increased secondary current at the expense of reduced frequency response.

Power-supply requirements are minimal: ±10V at 10 mA. Resistor $R_o$ is a sense element for monitoring current and should have a low enough value that it does not necessitate an excessive compliance voltage. Size $R_o$ such that $R_o = 0.5V/I_{leak}$. Also, choose the circuit's signal-ground point to minimize compliance voltage.

Starting with the following definitions:

- $I_{leak} =$ system leakage current
- $I_o =$ circuit output current
- $I_{leak} =$ ground current
- $I_s =$ transformer secondary current
- $N_1 =$ number of turns on transformer primary
- $N_2 =$ number of turns on transformer secondary
- $N = N_2/N_1 =$ transformer-turns ratio

$V_1 =$ output

\[ V_1 = I_2 \times R_1 = (I_{leak} + I_o) \times R_o / N. \]

$I_o$ for this precision feedback amplifier circuit is

\[ I_o = - (V_1 / R_o) \times (R_o / R_s) \approx - I_{leak} \times (1 - (N \times R_o \times R_s) / (R_1 \times R_o)). \]

$I_{leak}$, the ground-leakage current, is

\[ I_{leak} = I_{leak} + I_o = I_{leak} \times (N \times R_o \times R_s) / (R_1 \times R_o). \]

For the values in Fig 1, the circuit reduces leakage current by a factor of 1000. EDN BBS/DI_SIG #1117

Reference

To Vote For This Design, Circle No. 741

Fig 1—This amplifier circuit senses ground-leakage current, develops an equal and opposite current, and injects the opposing current into the protective ground, thereby neutralizing potentially life-threatening leakage.
SAFETY IN NUMBERS.

150 DESIGN KITS FROM 35 ASIC VENDORS.

If you're an ASIC designer, DAZIX has the numbers you can count on.

Our ASIC design environment lets you choose from over 150 design kits from 35 major ASIC vendors. These kits contain the libraries, models, and interfaces you need for fast, accurate design and simulation of PLDs, FPGAs, gate arrays, cell-based, and full custom ASICs. And by giving you a large number of ASIC vendors to choose from, we expand your design options and help you increase control of your design process.

Within our ASIC design environment, you can select a variety of technologies — including CMOS, HCMOS, bipolar/ECL, and GaAs. Plus, you can combine different technologies, devices, and vendors. And there's just one design suite and one icon-driven interface to learn, so you won't need to retrain as you migrate from foundry to foundry, project to project, and device to device.

What's more, once your ASIC design is completed, it can be integrated directly into your PCB, hybrid, and MCM designs.

Call for free ASIC catalog. To learn more about how DAZIX can make your ASIC design job easier, call for our newest catalog, ASIC Design Solutions.

In the U.S., call 800-239-4111. In Europe, fax 33-1-4537-7135. In the Asia Pacific area, call 852-8661966.

DAZIX®

An Intergraph Company

DAZIX® and Intergraph® are registered trademarks of Intergraph Corporation. Other brands and product names are trademarks of their respective owners.

Copyright 1992 Intergraph Corporation. Huntsville, AL 35894-0001. DDADO5240.
Shaft encoder powers tachometer

Larry Rinehart, IXYS Corp, San Jose, CA

Unlike optical shaft encoders that keep an internal count of pulses from a rotary pulse generator, IC₁ in Fig 1 outputs a delta value to be stored in an external counter upon command. Sampling this delta value at a known rate, instead of simply using it to count up or down, yields a tachometer.

IC₂ generates the sampling pulse for IC₁. Because IC₁’s internal clock is asynchronous to the sample clock, IC₁’s chip-select pin CS, pin 1, must be active low for at least one clock period (the maximum latency), plus the chip access time, plus the data-setup time of the D/A converter, IC₂. For the components shown, CS must be low for at least 700 nsec.

IC₁ outputs a 2’s-complement binary output that represents 8-bit, bipolar numbers. Unfortunately, to achieve a bipolar output, the D/A converter needs complementary-offset binary numbers. (The D/A converter also needs an output op amp to achieve bipolar outputs.) Comparing the shaft encoder’s output with the codes that the D/A converter requires reveals that adding 80₁₆₁ to the encoder’s output will make the devices compatible. Inverter IC₂⁺ complements the most significant bit of the encoder’s output, performing the conversion simply.

Achieving a ±2.5V analog-output range requires offsetting the D/A converter’s output. Tying the converter’s pins 14 and 16 to the output, pin 15, sets the converter’s output range at 0 to 2.56V. The 1.25V reference provides an offset of half this range. R₁ centers the output. The LT1097 can swing to within 2V of either supply rail, allowing operation from ±5V at full accuracy. If you require a traditional ±10V output, you must operate the circuit from ±12V supplies and change R₂ from 10.0 kΩ, 1% to 39.2 kΩ, 1%.

Fig 1—This simple circuit turns a shaft encoder into a tachometer and requires no controlling μP.
**VIDEO BUFFER GUARANTEES 0.999V/V GAIN OVER TEMP FOR $4.25***

**Sharpest Video Images: 0.01°/0.03% Diff Phase/Gain**

Maxim's new 180MHz MAX405 high-speed, precision buffer amplifier combines superior differential gain and phase with 650V/μs slew rate while operating from ±5V supplies. Gain is guaranteed to be greater than 0.999V/V over -40°C to +85°C, with loads as low as 50Ω. The MAX405 comes in compact 8-pin DIP or SOIC packages and, unlike existing buffers, access to the inverting input allows accurate gain adjustment from 0.99 to 1.1V/V.

**Precision**
- 0.01° Differential Phase
- 0.03% Differential Gain
- 0.1% Nonlinearity Over Temp
- 0.999V/V Min Gain Over Temp
- 0.01Ω Rout
- Adjustable Gain

**Speed**
- 180MHz Bandwidth
- 650V/μs Slew Rate
- 35ns Settling to 0.1%

**Drives Four 150Ω Loads**

The MAX405, with a guaranteed 60mA continuous output current, directly drives a 50Ω load to ±3V, or as many as four 150Ω loads (four 75Ω back-terminated loads) to ±2.25V. The MAX405 is ideal as a 50Ω and 75Ω coaxial cable driver for NTSC, PAL or SECAM color video signals.

**FREE Video Design Guide**

Includes: 
- Application Notes
- Data Sheets
- Cards For Free Samples

Simply circle the reader response number, contact your Maxim representative or Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX (408) 737-7194.
The function relating the circuit's output voltage to shaft speed is

\[ V/\text{rpm} = 4(V_1 \times \text{encoder output})/(f_{\text{SAMPLE}} \times \text{encoder count depth}) \]

IC₁'s count depth is 127. The sample frequency, \( f_{\text{SAMPLE}} \), must be high enough so that IC₁ does not accumulate more than 127 counts between sampling. For the components shown, a shaft rotating at \( \omega = 60 \) rpm and a sample frequency, \( f_{\text{SAMPLE}} \), of 1844 Hz produce an output voltage of 0.06V. The 3½-digit panel meter shown displays 1/1000 V/rpm, or, in this case, 60 (note that the decimal point is turned off).

---

**Answering machine signals “beeper”**

Dan Goldish, Raytheon Co, Marlboro, MA

The circuit in Fig 1 will signal your pocket pager (“beeper”) whenever your answering machine records a call. The circuit is less expensive than combination voice-mail/beeper services. The circuit connects in parallel with your answering machine's telephone line. After the answering machine finishes recording an incoming call, the circuit waits for a dial tone and proceeds to call your paging company. Your beeper will then beep or vibrate, displaying the telephone number of your answering machine.

The listing for the 8051's program, too long to print here, is available on the EDN BBS. The program initializes the Xecom XE2401 ultra-compact component data modem upon power-up. When the modem chip detects an incoming call, it increments an internal ring counter. You could use any Hayes-compatible modem by connecting the 8051's serial pins to the modem via level translators. The 8051, which knows how many rings will occur before the answering machine answers the call, interrogates the modem chip to determine if a person or the answering machine took the call.

---

**Fig 1**—This simple 2-chip circuit will monitor a phone line to determine if a person or an answering machine takes a call. If the answering machine takes the call, the circuit will call the user's pager service after the answering machine finishes recording the call.
WORLD'S SMALLEST POWER SUPPLY FOR PORTABLES

Load & Power Management System Has 7 Supplies In One IC!

Maxim's new MAX714-MAX716 combine up to four +5V low dropout linear regulators, three DC-DC switching regulators and power-supervisory functions—all in one IC! Save power and extend battery life by shutting down inactive subsystems in your portable equipment. Each of the 7 voltage outputs from MAX716 can be independently turned on and off digitally. Efficiency remains at a high 83% with both light and heavy loads.

And, they interface with portable computer chip sets from Intel (386SL), VLSI (Scamp Power Management Unit), and Chips & Technologies (82C63).

ORDER A FULLY-ASSEMBLED EVALUATION BOARD

AC/DC ADAPTOR*  
MAIN BATTERY*  (5 NiCad CELLS)
+3V BACKUP BATTERY*  
DIGITAL POWER-LINE CONTROLS (ENABLE/DISABLE)
LCD-CONTRAST DIGITAL CONTROL

AC ON  POWER-FAIL  LOW-BATTERY  WARNING

OUT1: +5V AT 100mA  
OUT2: +5V AT 500mA  
OUT3: +5V AT 500mA  
OUT4: +5V AT 500mA  
OUT5: +12V AT 60mA (TO FLASH MEMORY)
OUT6: -5V TO -26V AT 40mA (ADJUSTABLE LCD POWER)
OUT7: -5V AT 80mA (MODEM POWER)

A complete MAX716 Evaluation Board contains an entire supply for portable load and power management.

83% Typical Efficiency
35μA Standby Current
Backup Battery Switchover
Low Voltage Warning
Digital LCD Contrast
Space-Saving DIP and SO Packages

Choose the Best Supply for Your Portable!

<table>
<thead>
<tr>
<th></th>
<th>MAX714</th>
<th>MAX715</th>
<th>MAX716</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5V Outputs</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>+12V Flash Memory Output</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Inverting Switching Reg. -5V</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>-5V to -26V Adjustable LCD Output</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Pin Count</td>
<td>14</td>
<td>24</td>
<td>28</td>
</tr>
</tbody>
</table>

FREE Power Supply Design Guide

Includes: Application Notes Data Sheets Cards For Free Samples

To receive your free design guide, simply circle the reader response number, or contact Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX (408) 737-7194.

Maxim is a registered trademark of Maxim Integrated Products. © 1991 Maxim Integrated Products.

CIRCLE NO. 93

EDN April 23, 1992 • 181
AGC amp uses true-rms feedback

Richard Majestic, Voice of America, Annapolis, MD

The automatic-gain-control (AGC) amplifier in Fig 1 features adjustable AGC time constants for both attack and release. The circuit’s signal-to-noise ratio is 90 dB min, and the circuit operates transparently throughout the 20-Hz to 20-kHz audio spectrum.

The design employs a voltage-controlled-amplifier (VCA) IC, the PMI/SSM2122; a precision rms signal-rectifier IC, the PMI/SSM2110; two bipolar low-noise audio-path op amps, NE5534s; and a BiFET VCA-control-voltage op amp. The precision-rectifier IC’s true-rms operation in the AGC amplifier’s feedback loop results in a dependable and precise gain control that retains a semblance of the signal’s dynamics while leveling the input signal over time.

The VCA is a high-performance device that has a dynamic range of 94 dB min typ over the audio range, total harmonic distortion (THD) plus noise of 0.01% typ, and 0.03% intermodulation distortion (at —10-dBu overall gain).

The circuit begins with a selectable inverting/noninverting input-buffer amplifier driving a VCA. The VCA has a true-rms level detector in its feedback loop. In addition, the circuit has selectable gain-reduction compression along with an adjustable output

Fig 1—This automatic-gain-control amplifier features adjustable time constants for both attack and release, has a signal-to-noise ratio of 90 dB min, and operates transparently throughout the 20-Hz to 20-kHz audio spectrum.
300kHz 1% ACCURACY
4th-ORDER FILTER-$3.75†!

No Clock, No Aliasing, No Pots, No Trimming, and No Capacitors

Maxim's new MAX274/MAX275 filters combine a proprietary low-noise circuit design with a continuous-time architecture to provide: 120μVRMS noise floor and 92dB dynamic range. And, for DSP applications, THD is only -86dB. Best of all, eliminate the clock noise and aliasing problems common with switched-capacitor solutions, while achieving 1% accuracy up to 300kHz frequencies!

- 8th-Order, Quad 2nd Order (MAX274) $4.95†
- 4th-Order, Dual 2nd Order (MAX275) $3.75†
- Fc Range: 100Hz to 300kHz (MAX275)
- 100Hz to 150kHz (MAX274)
- No Clock, No Clock Noise – Continuous Time
- 1% Fc Accuracy* Over Temp with No Trims
- Low Noise — 92dB Dynamic Range
- -86dB Total Harmonic Distortion + Noise
- Cascadable for Higher Orders
- Narrow DIP and Wide SO Packages

Evaluation Kit & Software Make Fast Filter Design Even Faster

Save time and simplify your filter design further by using Maxim's new design software and MAX274 evaluation kit, available for only $20 (MAX274EVLKIT, FOB USA, recommended resale).

FREE Analog Filter Design Guide

Including: Application Notes ♦ Data Sheets ♦ Cards For Free Samples

To receive your design guide, simply circle the reader response number, or contact Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX (408) 737-7194.

CIRCLE NO. 94

Maxim is a registered trademark of Maxim Integrated Products. © 1991 Maxim Integrated Products.
level and a control for maximum gain limiting (also known as “gating”). If the input signal disappears, the maximum-gain limiting quashes the input’s noise-floor rise as the circuit waits for an input signal to regulate.

The 6-position gain-reduction selector provides adjustable signal compression that helps steady the AGC amplifier’s action. The selector blocks the irritating hole produced by transient signals impressed on the wanted signal and flattens the “pumping” characteristic of AGC amplifiers.

Op amp IC₁₅ and C₁ integrate the detected level while the remaining amplifier functions as the VCA’s control-voltage buffer. Comparing the integrator’s signal voltage to a reference voltage set by the output-level potentiometer determines the circuit’s instantaneous output level.

Changing C₅’s (the final integrator’s) charging-time constant or charging current’s waveform adjusts the gain-reduction attack and compression response. The adjustment range spans 20 to 200 msec. The constant-current discharge of C₅ controls the gain-correction release rate. Changing Q₅’s emitter current adjusts C₅’s discharge linearly via the AGC release-rate control. The adjustment range is 3 to 32 sec for recovery from a 6-dB gain-reduction event.

You trim the VCA’s THD by adjusting the distortion-null control, R₅, for a minimum value while applying a −10 dBu, 1-kHz signal to the input and setting the circuit’s output to 0 dBu.

**Circuit amplifies without amplifiers**

**Miss Jhoti Vandana, SMC, Madras, Tamil Nadu, India**

The circuit in Fig 1 amplifies a dc signal using switches and charge-storage capacitors. The circuit has a fixed gain of 8 and averages the input signal over eight timing periods.

In operation, a 400-Hz sampling clock drives divider IC₅, a 74HC393. The divider’s output selects a particular capacitor for charging from the input via analog switches IC₁ and IC₂. IC₁ couples the input sequentially to each flying capacitor while IC₂ provides a corresponding current-return path.

Both analog-switch ICs become inactive if their pin-6 (INH) inputs are low. In this case, the voltage across the eight series capacitors is eight times the average input voltage. If the switches are active, you can pick off the output voltage with a differential-input probe or amplifier. The clock frequency is not critical.

**Fig 1—The stack of flying capacitors produces an overall gain of 8 for this novel “amplifier-less amplifier.”**
COMPLETE +5V RS-232 SERIAL PORT WITH 1μF EXTERNAL CAPS!

- 1μF External Capacitors
- 1μA Supply Current in Shutdown
- 28-Pin Wide SO Package – MAX241
- 4 RS-232 Drivers, 5 RS-232 Receivers – MAX241
- Meets All EIA/TIA-232 Specifications

Select the 1μF Transceiver For Your Design

<table>
<thead>
<tr>
<th>Device</th>
<th>Number of RS-232 Drivers</th>
<th>Number of RS-232 Receivers</th>
<th>External Capacitors</th>
<th>Shutdown &amp; Three-State Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX230</td>
<td>5</td>
<td>0</td>
<td>4x1μF</td>
<td>Yes/No</td>
</tr>
<tr>
<td>MAX231</td>
<td>2</td>
<td>2</td>
<td>2x1μF</td>
<td>No/No</td>
</tr>
<tr>
<td>MAX232</td>
<td>2</td>
<td>2</td>
<td>4x1μF</td>
<td>No/No</td>
</tr>
<tr>
<td>MAX233</td>
<td>2</td>
<td>2</td>
<td>None</td>
<td>No/No</td>
</tr>
<tr>
<td>MAX234</td>
<td>4</td>
<td>0</td>
<td>4x1μF</td>
<td>No/No</td>
</tr>
<tr>
<td>MAX235</td>
<td>5</td>
<td>5</td>
<td>None</td>
<td>Yes/Yes</td>
</tr>
<tr>
<td>MAX236</td>
<td>4</td>
<td>3</td>
<td>4x1μF</td>
<td>Yes/Yes</td>
</tr>
<tr>
<td>MAX237</td>
<td>5</td>
<td>5</td>
<td>4x1μF</td>
<td>No/No</td>
</tr>
<tr>
<td>MAX238</td>
<td>4</td>
<td>4</td>
<td>4x1μF</td>
<td>No/No</td>
</tr>
<tr>
<td>MAX239</td>
<td>3</td>
<td>5</td>
<td>2x1μF</td>
<td>No/Yes</td>
</tr>
<tr>
<td>MAX240</td>
<td>5</td>
<td>5</td>
<td>4x1μF</td>
<td>Yes/Yes</td>
</tr>
<tr>
<td>MAX241</td>
<td>4</td>
<td>5</td>
<td>4x1μF</td>
<td>Yes/Yes</td>
</tr>
</tbody>
</table>

FREE Interface Design Guide

Including: Application Notes ♦ Data Sheets ♦ Cards For Free Samples

To receive your design guide, simply circle the reader response number, or contact Maxim Integrated Products; 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX (408) 737-7194.

Maxim is a registered trademark of Maxim Integrated Products. ©1992 Maxim Integrated Products.
ADC/DAC combination finds square roots

Jeff Kirsten, Maxim Integrated Products, Sunnyvale, CA

Placing an ADC and DAC in an op amp’s feedback loop forms a circuit (Fig 1) whose output is proportional to the square root of the input voltage. The circuit provides the square-root answer in digital and analog form at the ADC output and at $V_{OUT}$, respectively. The circuit uses 12-bit serial-interface converters, and has an input range of 0 to $-5\text{V}$. For inputs between $-5\text{ mV}$ and $-5\text{V}$ the accuracy is better than 0.1%.

The DAC generates an internal current, $I_{DAC}$, that represents the product of the applied digital code and the applied reference voltage, $V_{REF}$, as follows:

$$ I_{DAC} = \frac{V_{REF}}{R} \times D, $$

where $D$ equals the input code divided by $2^N$, $R$ is the internal R-2R ladder’s equivalent resistance, and $N$ is the converter’s resolution in bits. Applying the same

---

![Fig 1](image-url)
If You’re Buying Flash Or E²PROMs From Somebody Else, You’re Missing A Few Parts.

Catalyst offers the largest selection of nonvolatile memories in these parts. And worldwide.

We start with a full range of CMOS Flash memories—reliable, cost-effective E²PROM alternatives, with access times as low as 120ns and densities up to 1 Megabit. And we’re the only manufacturer to offer both 12V and 5V designs.

Next we offer a wide variety of serial and parallel E²PROMs, giving you the exact densities, bus structures and voltage levels you need. Then we add parts with innovative design features, such as ZERO Power™ standby current and our password-protected Secure Access E²PROMs.

We also play an important part in the RAM world with our low-power CMOS NVRAM.

These quality Catalyst parts offer compatibility with industry-standard memories and exceptional ease of interfacing. Most come in commercial and industrial temperature ranges and a complete choice of packaging options.

So now you not only have unparalleled design freedom. You also have the convenience of working with one vendor for all your memory needs—including high-speed CMOS EPRöMs.

If you’re missing any of these devices, call today for a product selection guide—or a part-to-part talk: (408) 748-7700. Or write Catalyst Semiconductor, Inc., 2231 Calle de Luna, Santa Clara, CA 95054.

We Deliver More For Less.
$100 Cash Award for all entries selected by editors. An additional $100 Cash Award for the winning design of each issue, determined by vote of readers. Additional $1500 Cash Award for annual Grand Prize Design, selected among biweekly winners by vote of editors.

To: Design Ideas Editor, EDN Magazine
Cahners Publishing Co
275 Washington St, Newton, MA 02158

I hereby submit my Design Ideas entry.

Name
Title
Company
Division (if any)
Street
City
Country Zip
Design Title
Home Address
Social Security Number (US authors only)

Entry blank must accompany all entries. Design entered must be submitted exclusively to EDN, must not be patented, and must have no patent pending. Design must be original with author(s), must not have been previously published (limited-distribution house organs excepted), and must have been constructed and tested. Fully annotate all circuit diagrams. Please submit software listings and all other computer-readable documentation on a 5¼-in. IBM PC disk in plain ASCII.

Exclusive publishing rights remain with Cahners Publishing Co unless entry is returned to author, or editor gives written permission for publication elsewhere.

In submitting my entry, I agree to abide by the rules of the Design Ideas Program.

Signed
Date

The winning Design Idea for the January 2, 1992, issue is entitled “VFC consumes miniscule current,” submitted by Jim Williams of Linear Technology Corp (Milpitas, CA).


To Vote For This Design, Circle No. 746
DATEL's new SHM-49 features low cost, low power dissipation, and outstanding performance - all in an 8-pin dip or LCC surface-mount package. Just compare the specs. We think you'll agree the SHM-49 is the ideal Sample Hold to whittle your problems down to size.

### Performance Specifications

<table>
<thead>
<tr>
<th><strong>Parameter</strong></th>
<th><strong>Min</strong></th>
<th><strong>Typ</strong></th>
<th><strong>Max</strong></th>
<th><strong>Units</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input/Output Voltage Range</td>
<td>±15V</td>
<td>±11.5</td>
<td>±15V</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>±12V</td>
<td>±8.5</td>
<td>±15V</td>
<td>V</td>
</tr>
<tr>
<td>Gain</td>
<td>-1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>V/V</td>
</tr>
<tr>
<td>Gain Error</td>
<td>±0.05</td>
<td>±0.5</td>
<td>±0.5</td>
<td>% FS</td>
</tr>
<tr>
<td>Linearity Error</td>
<td>±0.005</td>
<td>±0.01</td>
<td>±0.01</td>
<td>% FS</td>
</tr>
<tr>
<td>Sample Mode Offset</td>
<td>±2</td>
<td>±17</td>
<td>±25</td>
<td>mV</td>
</tr>
<tr>
<td>S/H Offset Error</td>
<td>±2.5</td>
<td>±25</td>
<td>±25</td>
<td>mV</td>
</tr>
<tr>
<td>Gain Tempco Drift</td>
<td>±0.5</td>
<td>±15</td>
<td>±15</td>
<td>ppm/°C</td>
</tr>
<tr>
<td>Sample Mode Offset Drift</td>
<td>±3</td>
<td>±15</td>
<td>±20</td>
<td>ppm/°C</td>
</tr>
<tr>
<td>Pedestal Drift</td>
<td>±5</td>
<td>±20</td>
<td>±20</td>
<td>ppm/°C</td>
</tr>
<tr>
<td>Acquisition Time</td>
<td>10V to ±0.01% FS (±1 mV)</td>
<td>160</td>
<td>200</td>
<td>nS</td>
</tr>
<tr>
<td>Sample to Hold Setting Time</td>
<td>10V to ±0.01% FS (±1mV)</td>
<td>60</td>
<td>100</td>
<td>nS</td>
</tr>
<tr>
<td>Sample-to-Hold Transient</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>mV p-p</td>
</tr>
<tr>
<td>Aperture Delay Time</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>nS</td>
</tr>
<tr>
<td>Aperture Uncertainty (Jitter)</td>
<td>±25</td>
<td>±50</td>
<td>±50</td>
<td>pS</td>
</tr>
<tr>
<td>Output Slew Rate</td>
<td>200</td>
<td>300</td>
<td>300</td>
<td>V/μS</td>
</tr>
<tr>
<td>Small Signal Bandwidth (-3 dB)</td>
<td>10</td>
<td>16</td>
<td>16</td>
<td>MHz</td>
</tr>
<tr>
<td>Droop</td>
<td>0.5</td>
<td>10</td>
<td>10</td>
<td>μV/μS</td>
</tr>
<tr>
<td>Feedthrough</td>
<td>-69</td>
<td>-74</td>
<td>-74</td>
<td>dB</td>
</tr>
<tr>
<td>Voltage Range</td>
<td>±15V</td>
<td>±15.5</td>
<td>±15.5</td>
<td>V</td>
</tr>
<tr>
<td>±5V</td>
<td>±4.75</td>
<td>±5.0</td>
<td>±5.25</td>
<td>V</td>
</tr>
<tr>
<td>Power Supply Rejection Ratio</td>
<td>±0.5</td>
<td>±1</td>
<td>±1</td>
<td>mV/V</td>
</tr>
<tr>
<td>Quiescent Current Drain</td>
<td>±15V</td>
<td>±12</td>
<td>±13.5</td>
<td>mA</td>
</tr>
<tr>
<td>±5</td>
<td>±1</td>
<td>±1.5</td>
<td>±1.5</td>
<td>mA</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>365</td>
<td>415</td>
<td>415</td>
<td>mW</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>SHM-49MC</td>
<td>0 to +70°C</td>
<td>0 to +70°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SHM-49MM</td>
<td>-55 to +125°C</td>
<td>-55 to +125°C</td>
<td></td>
</tr>
</tbody>
</table>

For complete data call or write today. DATEL, Inc., 11 Cabot Boulevard, Mansfield, MA 02048. Telephone: (508)339-3000, FAX: (508)339-6356. For immediate assistance call 1-800-233-2756.
LOOKING FOR A QUALITY BOARDHOUSE?
ALL YOUR CIRCUIT BOARD NEEDS UNDER ONE ROOF

PCB MANUFACTURING
- 2 Day turn on multi-layers
- Prototype and production
- Gerber Data Review
- Database/Netlist test

TECHNICAL ASSISTANCE
- PCB layout tips
- Mfg cost cutting tips
- Artwork standards
- Gerber Data via modem, 24 hours (714) 970-5015

CALL FOR A QUOTE!
A MANUFACTURING, LAYOUT AND SUPPORT CENTER

MCD MURRIETTA CIRCUITS
4761 E. HUNTER AVE. ANAHEIM, CA. 92807
TEL: (714) 970-2430 FAX: (714) 970-2406

CIRCLE NO. 98

Registered PROMs form state machines
Dmitrii Loukianov, Coneco Ltd
Moscow, Russia
The text, circuit diagrams, and listings in EDN BBS /DL_SIG #1122 present a general method of using Cypress CY7C225/235/245 registered PROMS as state machines.

To Vote For This Design, Circle No. 747

Self-modifying code speeds DSP32C interrupts
Steve Denny and Stephen J Roome, Data Sciences
Farnborough, Hants, UK
The documentation and listings in EDN BBS /DL_SIG #1123 outline how to use self-modifying code to speed servicing multiple interrupts with an AT&T DSP32C DSP μP.

To Vote For This Design, Circle No. 748

Block floating-point FFT trades accuracy for speed
Vladimir Bochev, Bulgarian Academy of Sciences
Sofia, Bulgaria
For low-frequency audio applications, the “block” floating-point FFT method for the TMS320C25 in EDN BBS /DL_SIG #1124 yields greater accuracy than other methods.

To Vote For This Design, Circle No. 749

Spice generates sine^2 pulse
Bashir Al-Hashimi, Matthey Electronics,
Stoke-on-Trent, England
The generalized Spice model in EDN BBS /DL_SIG #1126 will generate a single sine^2 pulse, an important test waveform in communications.

To Vote For This Design, Circle No. 750

These Software Shorts listings are too long to reproduce here. You can obtain the listings from the Design Idea Special Interest Group on EDN’s bulletin-board system (BBS): (617) 558-4241, 300/1200/2400/9600,8,N,1. From Main Menu, enter ss/DI_SIG, then r<nnnn>, where <nnnn> is the number referenced above.
The largest electronics engineering expo in the Eastern United States
Recharged
The pulse of the hottest innovations in the electronics industry.

Electro returns to Boston with an expanded technology focus, featuring:

- **CUTTING EDGE SOFTWARE** for the engineering environment, including
- One-day Windows seminar
- All-day seminar on the Demeter method for object-oriented design
- Keynote address by Jim P. Manzi, CEO and President of Lotus Development Corp.

PLUS
- All-new state-of-the-art Semiconductor exhibit area on the show floor
- Special test and measurement section featuring up-to-the-minute developments in test and measurement equipment
- Purchasing Conference on "Teambuilding: The Ultimate Vendor"

For more information about attending Electro/92, call 1-800-877-2668 or FAX to 310-641-5117.

---

<table>
<thead>
<tr>
<th>POSITION</th>
<th>COMPANY</th>
<th>MAILING ADDRESS</th>
<th>AREA CODE</th>
<th>NUMBER</th>
<th>ZIP CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineer</td>
<td>Advanced Entertainment Electronics</td>
<td>123 Main St, City, State, Zip</td>
<td>123</td>
<td>45678</td>
<td>90174</td>
</tr>
<tr>
<td>Project Manager</td>
<td>Sales Management</td>
<td>456 Main St, City, State, Zip</td>
<td>123</td>
<td>45678</td>
<td>90174</td>
</tr>
<tr>
<td>Director</td>
<td>R&amp;D</td>
<td>789 Main St, City, State, Zip</td>
<td>123</td>
<td>45678</td>
<td>90174</td>
</tr>
<tr>
<td>VP of Marketing</td>
<td>Marketing</td>
<td>1012 Main St, City, State, Zip</td>
<td>123</td>
<td>45678</td>
<td>90174</td>
</tr>
</tbody>
</table>

**All-Industry Conference on how the Northeast can grow in the world marketplace**

Mail or FAX the coupon below. You'll receive:

- FREE admission to exhibits and technical sessions
- Full preview of Electro/92 technical program

---

**Electro/92 International**
Electronic Show and Convention
May 12-14, 1992
Hynes Convention Center
Boston, Massachusetts

**Complimentary Registration**
Member of:
- IEEE
- ERA
- First Time Attendee

**Three Ways to Register**
1. **MAIL** - before April 15 to Electro Registration, 2368 Eastman Ave., Suite 11, Ventura, CA 93003-6476. Your badge will be mailed to you.
2. **FAX** - after April 15 FAX to (310) 641-5117. Pick up your badge at the Will Call Desk.
3. **ON-SITE** - bring this card with you to receive FREE admission.

Persons under 18 years of age not admitted.
WHEN IT COMES TO SURFACE MOUNT CRYSTAL UNITS, ONLY RALTRON HAS IT ALL.

RALTRON manufactures one of the industry's most complete lines of high quality crystal units. Call us for all your crystal needs from microprocessor to AT strip to tuning fork to high accuracy. Or call us for our 28 page catalogue.

NEW! SURFACE MOUNT CRYSTAL UNIT—2.5 MM HEIGHT—T25 SMD
- Frequency Range: 3.5 MHz-50 MHz
- Oscillation Mode: Fundamental to 3rd O.T.
- Frequency Tolerance: ± 50 ppm @ 25°C
- Frequency Stability: ± 100 ppm max (-10°C to + 60°C)

NEW! SURFACE MOUNT CRYSTAL UNIT—3.0 MM HEIGHT—HC-49 SHORT SMD
- Frequency Range: 8 MHz-50 MHz
- Oscillation Mode: Fundamental to 3rd O.T.
- Frequency Tolerance: ± 50 ppm @ 25°C
- Frequency Stability: ± 100 ppm max (-10°C to + 60°C)

EDN DESIGN IDEAS
Feedback & Amplification

Respondents rise to challenge
Shu Zheng Ping's "Input accepts negative or positive pulses," EDN, August 19, 1991, pg 164, is a supposedly minimal-parts-count circuit. Although not specified, apparently the input pulse is ±6V and a propagation delay of 300 μsec is acceptable, based on the components shown. Isolation is not required, only that the circuit be able to handle "pulses of either polarity." The circuit in Fig 1 will meet these specs and has a propagation delay of less than 1 μsec.
Brad Hanscom
NTI
355 N Sheridan St, #114
Corona, CA 91720

The circuit in Fig 2 uses three inexpensive, general-purpose transistors to accept negative or positive pulses. The input is at zero level, transistors Q1 and Q2 are off, and Q3 is on, yielding a zero output level. For a positive pulse, Q1 switches on, switching Q2 off, developing a positive level at the output. If a negative pulse arrives, Q2 conducts to switch Q1 off, also developing a positive output. You can scale this simple circuit for different supply and input voltages.
M S Nagaraj
ISRO Satellite Centre
Airport Rd, Vimanapuro Post Office
Bangalore, Karnataka, India

CIRCLE NO. 141

HIGH POWER FACTOR
Custom Switching Power Supplies
for
- Engineering work stations
- Computer main frames
- Computer peripheral equipment
- Business equipment
- Telecommunications
- etc.

- High power factor 0.99
- Design, manufacturing in Japan
- Repair center in U.S.A.

FDK also specializes in DC-DC converters, hybrid ICs, memory cards, ferrite cores, lithium batteries, stepper motors, optical isolators, etc.

FDK Your Best Strategic Partner
FDK AMERICA, INC.
A Division of Fuji Electrochemical Co., Ltd.
2880 Zanker Road, #102 San Jose, California 95134 U.S.A.
TEL: 408-432-8331 FAX: 408-435-7478
Dallas TEL: 214-650-7742 FAX: 214-650-7792

CIRCLE NO. 142

Fig 1—Paring parts count down to the bone, this circuit produces a unipolar output from positive or negative pulses.

Fig 2—This scalable incarnation achieves the same results as Fig 1's circuit using a comparable number of inexpensive parts.
Meet The V.I.P.™ That Will Save You Months Of...
- Hardware/software design frustration.
- Material sourcing headaches.
- Mechanical design trials.
- Vendor delays.
- Tooling problems—not to mention costs!
- Overtime.
- Phone calls to numerous vendors.
- Distractions from your basic business.

Introducing The 4×20 V.I.P.
Operator Workstation/Mini-Terminal

Product development delays are difficult to avoid—even for professionals. Our new, self-contained, front mount 3902-04 4×20 V.I.P. eliminates your frustration before it begins! For starters—it uses a bright, clear, vacuum fluorescent display featuring 5mm dot matrix characters arranged in four twenty-character rows.

Sealed Front Panel
The 33-key, rim embossed switch array uses reliable stainless steel metal-dome actuators behind a completely sealed membrane overlay.

Slide-In Switch Legends
Slide-in switch legends make it easy for you to quickly generate professional-looking prototypes.

Programmable Through Serial Port
We’ve gone one step further—you can now program canned messages directly through the serial port to EEPROM. Removing PROMs for external programming is a thing of the past!

Only 1” Deep
Our 4×20 V.I.P. is only 1” deep behind the front panel—making it ideal solution for door-mounted displays and other tight installations where depth presents a problem.

Applications
The 4×20 V.I.P. is tailored for process control, security, machine tool, and test equipment applications.

Operates On Low Power
This workstation/mini-terminal operates on 5 VDC and dissipates only 3 watts.

Additional Features:
- Programmable switch outputs
- Horizontal scroll
- Blinking characters
- 5 sets of 6 custom (user-programmable) characters
- 3 software-controlled display brightness levels
- NEMA-12 rated
- Both RS-232-C (with CTS & DTR) and RS-422 protocol I/O at 1200, 2400, 9600, and 19,200 baud
- ESD shielding standard
- Operating temperature range: 0 to +70°C
- Up to 127 canned messages can be stored in the 7k bytes of onboard EEPROM memory
- Choose from several display viewing filter color options
- Built-in comprehensive self-test function
- Overall dimensions: 11.40 × 6.00 × 1.73” (W × H × D)

Also available as a 3902-9904 “Stripped” V.I.P. without the front panel, keyboard and rear cover. Use your own external keyboard (up to 8×8) and panel mount.

The Finishing Touches
We can add custom overlay graphics, multi-colored key legends, and your company logo to give the 4×20 V.I.P. your personal touch.

Meet The Entire IEE Industrial Products Division Family—
Call or write for our free, 4-color Product Selector Guide.

IEE is a sustaining member of SIA.

INDUSTRIAL ELECTRONIC ENGINEERS, INC. 7740 Lemona Avenue, Van Nuys, California 91409-9234 (818) 787-0311 FAX: (818) 901-9046

Circle #57 Immediate
Circle #58 Reference 193
Brushless DC motors provide extended life in demanding applications

These compact 12-24 VDC motors are designed for tape cartridge drives, business machines, medical equipment, pumps/compressors and similar applications. Available in 2.0" and 3.2" diameters with stall torque from 10 to 84 oz-in. Custom shaft and housing and configurations to match your requirements. AMETEK, Lamb Electric Division, 627 Lake Street, Kent, OH 44240. Tel: 216-673-3451. Fax: 216-673-8994. In Europe, Friedrichstrasse 24, 6200 Wiesbaden, Germany. Tel: 611-370031. Fax: 611-370033.

CIRCLE NO. 143

The Ultimate “How To” Book

With Molex’s new full-line catalog #920, you get the ultimate “how-to” book. How-to solve your unique design problems. How-to lower your total applied costs. And how-to meet your specific delivery and quality requirements.

So if you’re wondering “how-to” get your hands on the most advanced interconnect technology, call or write Molex today for our new full-line catalog.

CIRCLE NO. 144

EDN-Design Ideas

Feedback & Amplification

Corrections

Donald B Herbert, author of the comprehensive and interesting Software Shorts DI #1004, DI #1005, and DI #1006 (EDN, August 19, 1991, pg 166), reports that the titles are misleading. The programs actually provide methods for simulating s-domain transfer functions with both commercial and Berkeley versions of Spice2. DI #1004 simulates any transfer function expressed as a ratio of polynomials; DI #1005 describes first- and second-order voltage-programmable transfer functions models; and DI #1006 provides a specific example of simulating a motor-speed controller using the first-order voltage-programmable transfer-function model.

Author John A Haase has corrections to DI #1010 (EDN, September 2, 1991, pg 166). The circuit draws −9V from the center of the 2-battery string as well as −18V from the two batteries. The emitter of Q2 connects to −9V; the emitters of Q3 and Q4 connect to −18V. The switch’s left- and right-hand positions should carry 10V- and 5V-pulse labels, respectively.

Author Henry Yiu says that the equation in his DI #1013 (EDN, September 2, 1991, pg 160) needs a few more terms:

dc offset = 4 × (diode-drop offset) + (% mismatch C1 - C2) × ((clock p-p voltage) − 4 × (diode drop))

Author Patrick H Conway wants to amend the math in his DI #973 (EDN, June 20, 1991, pg 162). The numerator of the right-hand side of the first equation should read NKf instead of NKf. Conway also supplies dimensions: the torque constant (stall torque) Kt is in newton-meters/volt; moment of inertia J is in newton-meter-sec² or kilogram-meters²; and the viscous-friction coefficient (damping, back EMF, windage), f, is in newton-meters/radian/sec. Otherwise, he considered the Design Idea to have been very well edited.

How to use our bulletin board

This icon identifies those Design Ideas that have computer-readable material posted on EDN’s bulletin-board system (BBS). Call our free BBS at (617) 558-4241 (300/1200/2400/9600 8, N, 1). Not every Design Idea has downloadable material, but each one does have a BBS number printed at the end of it. Once you get into the system, you can use that number to find more information on a particular idea. If you’d like to comment on any Design Idea, include the number in the subject field of your message.
If you're serious about product quality, the name to know in capacitors is IC. Since 1935, IC has engineered capacitors to the industry's highest quality standards.

IC backs this commitment with the latest equipment and manufacturing techniques, including burn-in testing of every capacitor. It's your assurance that every IC capacitor will perform the first time, every time, to keep your products or system at peak performance.

IC distributors stock a wide range of IC capacitors at a location near you. They're backed by IC's extensive inventory, for the fastest possible delivery.

Up goes performance! Down come inspection costs. Make it all happen with IC. Call us today!

Ask for FREE Capacitor Engineering Guide.

ILLINOIS CAPACITOR, INC.
3757 West Touhy Avenue, Lincolnwood, IL 60645
(708) 675-1760 • Fax: (708) 673-2850

CIRCLE NO. 145
TRY AS THEY MAY, SOME PROBES JUST CAN'T GET A HANDLE ON TODAY'S SHRINKING DEVICE GEOMETRY.

Often, the biggest job a probe can do is a little one. That's why it makes perfect sense to hook up with Tektronix. After all, Tek has always been committed to staying on top of the latest in probe technology. Especially when it comes to small-geometry device probing, where today we make everything from small-pitch clips and adaptors, to microwave probes that work at the IC pad level. In short, probes that'll keep you from making a mess of even the smallest job. TALK TO TET/1-800-426-2200 EXT. 74
Stereo 16-Bit Audio DAC

- Operates from a 5V supply
- 95-dB S/N ratio

The latest member of the company’s Soundport family, the AD1866 is a complete stereo 16-bit audio DAC that operates from a single 5V supply for portable, low-power, and multimedia computer-audio applications. Requiring few external components, the DAC contains two independent precision references, output amplifiers, and 16-bit converters. Eliminating the need for false-ground circuitry are de-bias pins, which position the output signal at 2.5V midscale, providing a 1.5 to 3.5V swing. Specifications include a S/N ratio of 95 dB, THD+N of 0.005% at 0-dB output, channel separation of 115 dB, and power consumption of 50 mW. In 16-pin plastic DIP and SOIC packages, $10.50 (100).

Analog Devices Inc, 181 Ballardvale St, Wilmington, MA 01887. Phone (617) 937-1428. FAX (617) 821-4273. Circle No. 368

Laser-Diode Driver

- Operates to 1.5 Gbps
- Provides 5- to 50-mA modulation

A silicon bipolar IC, the IDA-07318 can drive laser diodes or LEDs in digital fiber-optic systems operating at speeds to 1.5 Gbps. The device suits data-communications terminals such as FDDI (100 Mbps) and FC (800 Mbps) as well as telecommunications such as SONET (OC-3 through OC-24). The IC features a 0- to 50-mA prebias and a 5- to 50-mA modulation current range. The driver operates from a single 5 or −5.2V supply and has a differential or single-ended input. In a hermetic 0.180-in.-square metal-ceramic surface-mount package, $50 (500).

Avantek, 481 Cottonwood Dr, Milpitas, CA 95035. Phone in US (800) 282-6835; in Canada, (416) 678-9430; in Europe, (49) 7081-140. Circle No. 369

Universal Power-Supply And Battery-Charger IC

- Delivers dc outputs of 60 or 30W
- Features fast current-mode control

The PWR-SMP260 incorporates a high-speed current-mode controller, which is designed to minimize component count, size, and weight of power supplies and battery chargers. The device delivers dc outputs of 60W from rectified 220/240V ac inputs or 30W from universal 85 to 265V ac inputs. A companion IC, the PWR-SMP240, is rated at 40 and 20W output from 220/240V ac and universal inputs, respectively. The current-mode controller contains an off-line preregulator, oscillator, bandgap reference, summing junction, PWM comparator, gate driver, and soft-start circuitry. Protection circuits include overvoltage, overcurrent, and thermal runaway. The programmable oscillator lets the designer select a maximum duty cycle of either 50 or 95%. A feed-forward circuit at the summing junction maintains constant-power battery charging for quick-charge applications. SMP260 and SMP240, in 23-pin plastic SIPs, $4.25 and $3.85, respectively, (1000).

Power Integrations Inc, 411 Clyde Ave, Mountain View, CA 94043. Phone (415) 960-3572. Circle No. 370
Dynamic-RAM accelerator module. The CYM7232 DRAM (dynamic RAM) Accelerator includes a bus interface that supports 50-MHz, 32- or 64-bit address/data bus systems and provides transaction, handshake, and bus-parity signals. Internal FIFOs accept a 128-byte burst. The 128-bit DRAM interface has four parallel 32-bit error-detection and correction paths, a 156-bit pipeline data register, and a 128- to 64-bit multiplexer. The module works with SPARC, 80486, 680x0, i860, and R4000 µPs, and their related caches. CYM7232, in 409-pin FGAs, $327 (100). Cypress Semiconductor, 3901 N First St, San Jose, CA 95134. Phone (408) 943-2600.

SBus DMA controller. Compatible with LSI Logic’s L68453 chip, the NIM618 DMA controller chip is an alternative for SBus peripheral-card designers. Unlike the L68453, which is limited to 24-bit addressing, the NIM618 device can access any part of the 32-bit SBus address space. Controller, $35 (100). Nimbus Technology, 2900 Lakeside Dr, Suite 205, Santa Clara, CA 95054. Phone (408) 727-5445.

Are your designs limited by prehistoric technologies?

Today’s engineers design for the future. They need technology which allows rapid prototyping and reduces development costs.

At Advanced Microelectronics, we can help you out of the Stone Age and into the future by reducing manufacturing costs, providing unlimited flexibility, and rapid results.

Our FPGA design methodology allows you to migrate your architecture to gate array, standard cell, or full custom implementations. In addition to FGAs, we also offer custom mixed signal solutions using bipolar, CMOS, and BiCMOS process technologies. From IC design, to modeling, to testing, to finished goods, we have a proven track record.

We give you the future now. Call today for more information: (601) 932-7620, Fax 932-7621. email: design@aue.com

High-speed, 12-bit ADC. The AD9034 ADC features 20-Msample/sec speed. Available in three performance grades, minimum SFDR (spurious-free-dynamic-range) specifications range from 70 to 74 dBc at 1.2 MHz and from 67 to 70 dBc at 9.6 MHz. All three grades offer a minimum S/N ratio of 65 dB at 1.2 MHz. Full-scale gain error is typically ±0.5%. The ADC includes a T/H amplifier, summing amplifier, reference, digital error-correction and timing circuitry. In 40-pin ceramic DIPs or flatpacks, from $715 (100). Delivery four to six weeks ARO. Analog Devices Inc, 7910 Triad Center Dr, Greensboro, NC 27409. Phone (919) 668-9511.

4-Mbit EEPROM. The WE512K8-150 CMOS EEPROM comes in a standard 32-pin hermetically sealed DIP and has a JEDEC standard byte-wide pinout. Organized as 512K×8 bits, the EEPROM operates from a 5V supply and features 10-year data retention and a read access time of 150 nsec. Typical operating current is 80 mA at 25°C and 5 MHz, and standby current is 1 mA. Industrial grades, $1630; military grades, $1800 (100). White Technology Inc, 4246 E Wood St, Phoenix, AZ 85040. Phone (602) 437-1520. FAX (602) 437-9120.
World Leader in High-Speed Analog

High-Speed Amps/Buffers

MONOCHROME & COLOR VIDEO AMPLIFIERS
- Cable Drivers
- Distribution Amps
- Gain Blocks

CURRENT MODE FEEDBACK VIDEO AMPS

<table>
<thead>
<tr>
<th>P/N</th>
<th>BW</th>
<th>$ @ 100 pc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2020</td>
<td>50 MHz</td>
<td>2.80</td>
</tr>
<tr>
<td>E2232</td>
<td>60 MHz</td>
<td>3.90</td>
</tr>
<tr>
<td>E2130</td>
<td>85 MHz</td>
<td>3.25</td>
</tr>
<tr>
<td>E2120</td>
<td>100 MHz</td>
<td>2.80</td>
</tr>
<tr>
<td>E2030</td>
<td>120 MHz</td>
<td>3.25</td>
</tr>
<tr>
<td>E400/</td>
<td>200 MHz</td>
<td>4.95</td>
</tr>
<tr>
<td>E2070</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VOLTAGE FEEDBACK VIDEO AMPS

<table>
<thead>
<tr>
<th>P/N</th>
<th>GBW</th>
<th>$ @ 100 pc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL2044</td>
<td>120 MHz</td>
<td>1.80</td>
</tr>
<tr>
<td>EL2073</td>
<td>200 MHz</td>
<td>4.95</td>
</tr>
<tr>
<td>EL2074</td>
<td>400 MHz</td>
<td>5.25</td>
</tr>
<tr>
<td>EL2075</td>
<td>2 GHz</td>
<td>5.25</td>
</tr>
</tbody>
</table>

VIDEO BUFFERS

<table>
<thead>
<tr>
<th>P/N</th>
<th>BW</th>
<th>I/O $ @ 100 pc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL2001</td>
<td>70 MHz</td>
<td>±160 mA</td>
</tr>
<tr>
<td>EL2002</td>
<td>180 MHz</td>
<td>±160 mA</td>
</tr>
<tr>
<td>EL2003</td>
<td>100 MHz</td>
<td>±230 mA</td>
</tr>
<tr>
<td>EL2072</td>
<td>730 MHz</td>
<td>±70 mA</td>
</tr>
<tr>
<td>EL2008</td>
<td>55 MHz</td>
<td>±1.8A</td>
</tr>
<tr>
<td>EL2009</td>
<td>90 MHz</td>
<td>±1.8A</td>
</tr>
<tr>
<td>EL2012</td>
<td>100 MHz</td>
<td>±350 mA</td>
</tr>
</tbody>
</table>

GENERAL PURPOSE HIGH-SPEED AMPS/BUFFERS
- High-Speed Signal Processing
- Instrumentation
- Medical Instruments

FAST AMPLIFIERS

<table>
<thead>
<tr>
<th>P/N</th>
<th>GBW</th>
<th>S/R*</th>
<th>$ @ 100 pc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL2422</td>
<td>60 MHz</td>
<td>200</td>
<td>6.95</td>
</tr>
<tr>
<td>EL2242</td>
<td>30 MHz**</td>
<td>40</td>
<td>5.25</td>
</tr>
<tr>
<td>EL2243</td>
<td>70 MHz**</td>
<td>90</td>
<td>5.25</td>
</tr>
<tr>
<td>EL2041</td>
<td>90 MHz</td>
<td>250</td>
<td>3.75</td>
</tr>
<tr>
<td>EL2006</td>
<td>60 MHz</td>
<td>450</td>
<td>22.59</td>
</tr>
<tr>
<td>EL2029</td>
<td>100 MHz</td>
<td>900</td>
<td>4.40</td>
</tr>
<tr>
<td>EL2038</td>
<td>1 GHz</td>
<td>1000</td>
<td>3.90</td>
</tr>
<tr>
<td>EL2039</td>
<td>600 MHz</td>
<td>550</td>
<td>2.75</td>
</tr>
</tbody>
</table>

FAST BUFFERS

<table>
<thead>
<tr>
<th>P/N</th>
<th>BW</th>
<th>S/R*</th>
<th>$ @ 100 pc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL2004</td>
<td>350 MHz</td>
<td>2500</td>
<td>21.00</td>
</tr>
<tr>
<td>EL2005</td>
<td>140 MHz</td>
<td>1500</td>
<td>20.15</td>
</tr>
<tr>
<td>EL2031</td>
<td>550 MHz</td>
<td>7000</td>
<td>40.00</td>
</tr>
</tbody>
</table>

LOW COST

- ONLY 1.5¢/MHz
- 325 V/us Slew Rate
- 120 MHz (-3 dB) BW @ Gain = 1
- $1.80 @ 100 pc. - P-DIP ($1.90 - SO-8)
- Drives Unlimited Load Capacitance
- Single or Split Supplies as Low as 2.5V
- $1.80 @ 100 pc. - P-DIP ($1.90 - SO-8)

FOR SAMPLES CALL OUR APPLICATIONS HOTLINE - (800) 333-6314 ext 311, Literature Only - ext 234
ELANTEC, INC. 1996 Tarob Court Milpitas, CA 95035 (408) 945-1323 (800) 333-6314 FAX (408) 945-9305 CIRCLE NO. 147 EDN April 23, 1992 201
TO MOTOROLA,
THIS BOX REPRESENTS
A VERY VISIBLE
MEANS OF SUPPORT.

The Sensible Choice
When Motorola went looking for a software partner committed to the entire 68000 family, they decided on Intermetrics. With superior product performance, a full range of software tools, and a reputation for high-quality technical service, Intermetrics was the perfect choice to support Motorola's line of premier embedded processors.

Hot Compilers For Hot Chips
Intermetrics InterTools C Compilers produce highly optimized code for all 68000 family processors, including the new EC series chips. This means that you can evaluate, prototype and build top-performing, Motorola-based systems in record time.

Expert Debuggers For Every Problem
Intermetrics also makes XDB Source Level Debuggers which are available in many configurations—from low-cost ROM Monitor-based systems to sophisticated emulator-based environments. XDB can help you debug fully optimized code, and is compatible with many popular embedded real-time operating systems.

Real Support, Real Time
At Intermetrics, the engineers who designed our products are only a phone call away. After all, they're the ones who really understand your needs and can help you.

Call Now For Product Information
For the latest information on our full line of products that support the 68000 family, call Intermetrics or your Motorola representative today, and you'll discover why Motorola made the perfect choice when they needed a dependable software partner.

Make Every Bit Count
Communications controller. Featuring an on-chip embedded RISC (reduced-instruction-set-computer) processor, the CL-CD1864 I/O controller can connect as many as eight full-duplex, asynchronous communications channels. Each channel can transfer data at rates to 64 kbps. The embedded processor minimizes the need for the host CPU to control the communications functions directly for every channel, thus increasing system efficiency. CL-CD1864, in a 100-pin quad flatpack, $33 (1000). Cirrus Logic Inc, 1463 Centre Pointe Dr, Milpitas, CA 95035. Phone (408) 945-8300. FAX (408) 263-5682. Circle No. 375

Analog interface circuit. Designed to meet the 11.4-kHz bandwidth required for multimedia audio processing the TLC32047 integrates several functions. Included are a bandpass switched-capacitor antialiasing filter, a 14-bit ADC, a 14-bit DAC, a lowpass output-reconstruction filter, signal-conditioning functions, control, timing, and a serial-port interface. TLC32047, from $15.33 (1000). Texas Instruments, Semiconductor Group (SC-92009), Box 809066, Dallas, TX 75380. Phone in US and Canada, (800) 336-5296, ext 3990; (214) 995-6011, ext 3990. Circle No. 379

Analog-digital array. The Quick-chip-7 tile array features npn transistors with an fT>12 GHz. The analog section contains 208 npn transistors, 56 pnp transistors, 32 Schottky diodes, and 848 resistors. The digital section, optimized for ECL designs, contains 336 npn transistors, 32 Schottky diodes, and 500 400Ω and 2000Ω resistors. The periphery of the chip contains 48 npn transistors, 24 1.35-pF capacitors, 64 ESD protection diodes, and 40 bond pads. Design start-up package, $15,000; prototypes (one wafer), $40,000. Tektronix Microelectronics, Box 500, Beaverton, OR 97077. Phone (503) 627-2515. Circle No. 376

Cache-TAG static RAMs. Featuring access times as low as 10 nsec, the 7C180 and 7C181 16-kbit cache TAG SRAMs eliminate wait states in 80386, 80486, and 68040 processors operating at speeds to 50 MHz. The 4k×4-bit SRAMs contain a 4-bit “TAG” comparator with a match output pin. The device compares the TAG RAM contents with current input data, and the result appears on the match pin. In 22-pin DIPs and 24-pin SOJ packages, and in speed ratings from 10 to 25 nsec, from $7.79 to $20.86 (100). AT&T Microelectronics, Dept 52AL040420, 555 Union Blvd, Allentown, PA 18103. Phone (800) 372-2447, ext 825; in Canada, (800) 553-2448, ext 825. FAX (215) 778-4106. Circle No. 377

High-speed PLD. Based on the 22V10 architecture, the GAL22V10B-7 programmable logic device (PLD) features a maximum propagation delay of 7.5 nsec. The 24-pin device operates at a clock frequency of 111 MHz and has a typical current drain of 90 mA. In DIPs and plastic leaded chip carriers, $18 and $18.50, respectively (1000). Lattice Semiconductor Corp, 5555 NE Moore Ct, Hillsboro, OR 97124. Phone (503) 681-0118. FAX (503) 681-0347. TLX 277338.

Prime Real Estate Available in a Great Location.

Locate your next product on a VME MXbus™ SideCard™ adjacent to a Mizar CPU card and you get your product to market faster because you start with an off-the-shelf CPU that comes up with the debugger the first time you power it on. And if you want to use a commercially available real-time OS, it is probably already ported to the board.

By building your custom design on a proven hardware and software foundation you also minimize your design risk. But you need not sacrifice any design flexibility because Mizar supplies a variety of configurations based on Motorola processors, including the 68040. And the VME MXbus™ accommodates single high 3U, conventional double height 6U, as well as unconventional 9U and custom configurations.

Call us today to take advantage of this opportunity to put your next design in a great location. It's a unique solution from Mizar that you can build on.

MIZAR
1419 Dunn Drive • Carrollton, TX 75006
1-800-635-0200 FAX 214-242-5997
©1992 Mizar Digital Systems, Inc.
Mizar is a registered trademark of Mizar Digital Systems, Inc. Other names are trademarks of their respective manufacturers.

CIRCLE NO. 149
EDN April 23, 1992 • 203
Whether you speak 01010011 or analog, Philips provides you with a complete analog and digital oscilloscope in one instrument. With a sampling rate of 200 megasamples per second and a bandwidth up to 200 MHz our easy-to-use 4-channel oscilloscopes represent state-of-the-art technology. With direct access functions. Innovations like a probe mounted button which allows you to recall set ups. Perform Autoset. Freeze display as well as display measured results.

In the analog mode, extremely fast update and infinite display resolution allow you to see three dimensionally. For instance, the distribution of time-jitter.

The digital mode is impressive. Logic triggering creates a true 4-channel logic analyzer. It is prepared for HDTV triggering. The powerful DSO specifications give you extensive trace storage possibilities. And processing capabilities like FFT. At Philips, we’re on your wavelength. Which is why we promise you one thing.

You’ll measure better performance
EDN-NEW PRODUCTS
Test & Measurement Instruments

1-Msample/sec EISA Bus Data-Acquisition Board
- Plug-on modules allow many configurations
- Permits burst-mode DMA to 16 Mbytes/sec

The PCI-20501C-1 board plugs into the EISA bus. It includes a 12-bit 1-Msample/sec ADC preceded by a buffer amplifier that has a fixed gain of 1. The board has eight single-ended inputs and two DMA channels that can operate simultaneously. Of these, one is general purpose and one transfers ADC data to memory. Expansion modules, two of which can plug onto the board, accommodate additional channels and functions. The PCI-20501C-2 lacks an ADC (you use it with separate ADC boards), has a single general-purpose DMA channel, and holds three plug-ins. The general-purpose DMA channels operate at a sustained rate of 1 Mbyte/sec or a burst rate of 16 Mbytes/sec. The ADC DMA channel operates at 2 Mbytes/sec. Board with ADC, $2470; without ADC, $1495.

Intelligent Instrumentation, 1141 W Grant Rd, MS 131, Tucson, AZ 85705. Phone (602) 623-9801. FAX (602) 623-8965. Circle No. 380

High-Channel-Count, 1-Msample/Sec ADC Board
- Configurable to 224 single-ended inputs
- Channel-list hardware programs rate and gain for all channels

The DT2839 12-bit ISA bus data-acquisition board has a 1-Msample/sec ADC and 32 single-ended or 16 differential inputs. The DT2896 expander, also an ISA plug-in, adds 96 single-ended or 48 differential inputs. The ADC board, which allows use of two expanders, offers software-programmable gains of 1, 2, 4, and 8. Throughput ranges from 224 ksamples/sec to 1 Msamples/sec, depending on the number of channels used, the gain, and whether you use expanders. Channel-list hardware supports the expanders and allows flexibility in configuring scans. The ADC board includes 16 digital I/O lines, two 100-kHz, 12-bit DACs with software calibration, two programmable clocks, and two 16-bit counter-timers. ADC board with software, $3495; expander, $995.

Data Translation Inc, 100 Locke Dr, Marlborough, MA 01752. Phone (508) 481-3700. FAX (508) 481-8620. TLX 951646. Circle No. 381

Phase-Angle Multimeter
- Operates from 0.1 Hz to 100 kHz
- Phase error is <0.05°

The 6000 phase-angle multimeter uses a 28-MHz DSP56001 and a 20-MHz MC68020 μP to perform 2048-point FFTs on all of the signals gathered by its 18-bit ADC. Over its bandwidth—0.1 Hz to 100 kHz—the instrument measures with errors of <0.05° in phase, <0.05% in amplitude, and <0.01% in frequency. The unit, which generates harmonics at least 85 dB below full scale, simultaneously measures the phase, frequency, and rms amplitude of each signal harmonic, from the fundamental to the 50th. Beside a 20-character x 4-line vacuum-fluorescent display, the unit has a 4.5-in.-long, 101-element LED bar graph, which operates either as an adjustable-reference zero-center null meter or as a linear or logarithmically scaled (4½-decade) meter. $8485. Delivery, five weeks ARO.

Xitron Technologies Inc, 10255 Barnes Canyon Rd, Suite A102, San Diego, CA 92121. Phone (619) 458-9852. FAX (619) 458-9213. Circle No. 382

EDN April 23, 1992 • 205
Nonvolatile random access memory doesn't need batteries anymore. It doesn't need an extra chip either. All it needs is this. The nvSRAM from Simtek.

At 64K, the nvSRAM offers the density to handle virtually anything you can come up with. It's extremely fast, with access speeds ranging from 30ns-55ns. It doesn't depend on a battery for nonvolatility, so reliability is unsurpassed. And because it's a one-chip solution, precious little board space is required. We think you'll find our nvSRAM is well suited to applications ranging from cellular phones to the most advanced military hardware. To prove it, we'll send you a free design kit. And we guarantee you'll get it within 48 hours of your request. So call Simtek at 1-800-637-1667 right now for your free design kit. (For production quantities, call your local Arrow/Schweber Electronics branch). And find out why, when it comes to nonvolatile RAM, batteries are dead.
Ethernet-to-IEEE-488 SPARCstation controller. The GPIB-ENET/Sun kit controls IEEE-488 instruments from any SPARCstation that can use Ethernet to access a TCP/IP (transfer-control protocol/internet protocol) network. The kit removes the usual 20m limitation on the length of IEEE-488 cabling and also allows one workstation to host as many as 64 IEEE-488 controllers, each driving 14 instruments (in other words, 896 instruments). $1595 to $1695 depending on your Ethernet wiring scheme with single-workstation software license. National Instruments Corp, 6504 Bridge Point Pkwy, Austin, TX 78730. Phone in US and Canada (800) 433-3488; (512) 794-0100. FAX (512) 794-8411. TLX 756737. Circle No. 383

100-Msample/sec ISA bus DSO board. The Compuscope 250 plugs into the 8-bit ISA bus. It digitizes one channel to 100 Msamples/sec or two channels simultaneously to 50 Msamples/sec each. Resolution is 8 bits. Bandwidth is 50 MHz. Memory depth is 16 kbytes/channel. $3500 including software drivers. Gage Applied Sciences Inc, 5465 Vanden Abeele, Montreal PQ, H4S 1Z1 Canada. Phone (514) 337-6893. FAX (514) 337-8411. Circle No. 384

Portable protocol analyzer/simulator. The Chameleon 1800 permits network testing and fault diagnosis at speeds to 2.048 Mbps. It decodes and analyzes ISDN (integrated-services-digital-network) primary-rate-interface data in real time and provides a graphical display of the network condition. Introductory price, $18,000. Tekeltec, 26580 W Agoura Rd, Calabassas, CA 91302. Phone (818) 880-5656. FAX (818) 880-6993. Circle No. 385

25A safety ground test set. The 5001A test set lets you test products in production for compliance with US, Canadian, and European electrical safety standards. It handles both the 25A ground-wire test and the 500V insulation-resistance test. Versions are available for 115V, 50/60 Hz, 4.5A and 230V, 50/60 Hz, 2.5A. A single receptacle lets you plug in finished products; there are terminals for component tests. $2600. Delivery, four to six weeks ARO. Associated Research, 905 Carriage Park Ave, Lake Bluff, IL 60044. Phone (800) 868-8378. FAX (708) 295-9165.

Circle No. 386

Digital-readout ESD testers. The MZEC1 through MZEC4/XV testers are based on the vendor's MiniZap simulator. They simulate both the electrostatic discharges (ESD) and the victim equipment. The units handle tests in the traditional air-discharge mode as well as in the newer contact mode. Diagnostic capabilities facilitate pinpointing the true causes of ESD failures. From $6490. Delivery, 30 to 60 days ARO. Keytek Instrument Corp, 260

Circle No. 387

CIRCLE NO. 152

TOYOCOM's New Ceramic Subminiature SMD in 3- and 5-volt versions.

Our TCO-787 Series Subminiature SMD Crystal Oscillator lets you save board space without compromising the high performance you need in palm-top computer applications.

And, with dimensions as small as .472" x .242" x .098", it takes up less than half the surface area of typical SMD oscillators.

The low-powered 3-volt version requires just one battery cell, assuring you the freedom to scale down board designs while reducing material costs.

Both versions are available in a ceramic housing, with or without mounting bumps.

For details, Call 1-800-TOYOCOM. 617 E. Golf Road, Arlington Heights, IL 60005-9829. Fax: (708) 593-5678. See us at Electro '92, Booth #5336, Boston, MA; May 12-14.
Temperature-monitoring system.
The 575-ELX-Temp provides hardware and software for 16-channel, 16-bit-resolution measurements using thermocouples or semiconductor sensors or 7-channel measurements using isolated thermocouples or RTDs (resistance temperature detectors). The product is based on the firm’s Easiest LX software and 575-2 data logger. $4150. Keithley Metrabyte, 440 Myles Standish Blvd, Taunton, MA 02780. Phone (508) 880-3000. FAX (508) 880-0179.

Tester for discrete semiconductor devices.
The model 8800 performs parametric and go/no-go tests on transistors, diodes, MOSFETs, JFETs, regulators, triacs, SCRs, and zeners in a range of packages. Using just four universal fixtures, it tests to 1200V and 5A with a resolution of 1 mV and ±0.1 nA. $6900. Information Scan Technology Inc, 487 Gianni St, Santa Clara, CA 95054. Phone (408) 988-1908. FAX (408) 980-1794.

Data-acquisition-board drivers for Basic dialect. This set of software drivers works with the vendor’s HTBasic and several ISA bus data-acquisition boards from National Instruments. Your program accesses the boards using familiar commands. The software automatically scales analog data into voltage units and stores the data in arrays of the Real data type. HTBasic Drivers, $75. TransEra Corp, 3707 N Canyon Rd, Provo, UT 84604. Phone (801) 224-6550. FAX (801) 224-0355. TLX 296438.

Clamp-on multimeter. The 380911 meter measures ac current to 300A, ac voltage to 750V, dc voltage to 1 kV, and frequency from 10 to 1999 Hz. It also measures temperature and checks continuity and diode function. A data-hold button freezes readings. A 9V battery operates the unit for 200 hours. $99. Extech Instruments Corp, 335 Bear Hill Rd, Waltham, MA 02154. Phone (617) 890-7440.

52-pin plastic-leaded-chip-carrier pin isolator. The PLeCSE-52-H works with instruments such as logic analyzers and in-circuit emulators. It accepts an IC and plugs into an IC socket on your target board. There is a switch for each device pin and test pins on both sides of each switch. Therefore the unit lets you isolate any or all of the device pins from the board. $223. EDI Corp, Box 366, Patterson, CA 95363. Phone (209) 892-3270. FAX (209) 890-3610.
Now you can afford VFD quality...VFD visibility

- Low power
- Long-term reliability
- Easy user interface
- Surface mount technology
- Flexible control data
- Parallel and serial input
- Built-in test function
- ASCII, European, Japanese Katakana characters
- 9 Modules to choose from

Call or write to see our entire line:

Los Angeles
23820 Hawthorne Blvd.
Suite 100
Torrance, CA 90505
Tel. 213-373-6704
Fax 213-772-3918

Chicago
2635 Clearbrook Dr.
Arlington Heights, IL 60005
Tel. 708-439-9020
Fax 708-593-2285

Boston
263 Winn St.
Suite 1D
Burlington, MA 01803
Tel. 617-270-0360
Fax 617-273-2892

Dallas
2454 Trade Mart
Dallas, TX 75207
Tel. 214-742-9389
Fax 214-747-5065

Europe
Frankfurter Strasse 97-99
6096 Raunheim
F.R. Germany
Tel. 06142-43095/96/97
Fax 06142-22799
Handheld inductive-loop analyzer. The ILT II meter measures inductance, resistance, capacitance, and Q—the so-called quality factor—with 0.02% error from 10 to 100 kHz. The DSP-based unit incorporates built-in diagnostic routines. It has an RS-232C port and is programmable to permit enhancements in the field. AC-powered version, $2395; battery-powered version, $2595. DVP Inc, 2401 Research Blvd, Rockville, MD 20850. Phone (301) 670-9282. Circle No. 393

PCXI bus audio-analysis module. The PX2362 analyzer plugs into the PCXI (PC extended for industry) bus. The 2-channel unit, which has a bandwidth of 1 to 50 kHz, includes a 20-MHz μP with 256 k words of dynamic RAM and 32 kbytes of zero-wait-state RAM. It averages signals and computes floating-point FFTs from 64 to 2048 points. $3495. Rapid Systems Inc, 433 N 34th St, Seattle, WA 98103. Phone (206) 547-8311. Circle No. 394

100-kHz to 100-GHz VXibus power meter. The 4052 single-slot C-size module can incorporate as many as four channels. It measures power from 100 pW (—70 dBm) to 7W. In conjunction with microwave sweep generators and suitable directional couplers, it forms a scalar network analyzer. $3750. Delivery, six weeks ARO. Racal-Dana Instruments Inc, 4 Goodyear St, Irvine, CA 92718. Phone (800) 722-3262. FAX (714) 859-2505. Circle No. 395

In-circuit emulator for 8XC053/54. The POD-C054 works with the vendor’s EMUL51-PC to provide full-speed μP emulation in configurations that have as much as 16 kbytes of memory. The emulator controls all time of the IC’s pulse-width-modulated commands as well as the three digital-video outputs. A plug-in trace board is optional. Nohau Corp, 51 E Campbell Ave, Campbell, CA 95008. Phone (408) 866-1820. FAX (408) 378-7899. Circle No. 396

5- and 10-Msample/sec 12-bit VMEbus ADC boards. The $4495 5-MHz ZPB1604 and the $3495 10-MHz ZPB1603 are 6U-size modules. The lower-speed unit has a spurious-free dynamic range (SFDR) of 80 dB and total-harmonic distortion (THD) of —80 dB. The faster board’s SFDR is 72 dB; its THD is —68 dB. Burr-Brown Corp, Box 11400, Tucson, AZ 85734. Phone (602) 746-1111. Circle No. 397

In-circuit emulator for 68HC16Z1. The Mime-700 gives you flexibility in configuring the processor, yet does not interfere with the μP’s function. The emulator, which allows 2 Mbytes of emulation RAM, supports full-speed zero-wait-state processor operation, and has an 8k-frame x 128-bit trace buffer with 48-bit time stamping. $14,659 with 256-kbyte emulation memory. Pentica Systems Inc, 19A Crosby Dr, Bedford, MA 01730. Phone (617) 275-4419. Circle No. 398

Portable PC-based data-acquisition system. The M-Tech 16-channel data-logging system housed in a portable PC based on a 25-MHz 80386 with 2 Mbytes of RAM, a 100-Mbyte hard disk, and a 640 x 480-pixel display. The 12-bit ADC, which is preceded by a 16-channel anti-aliasing filter, takes 150 ksamples/sec. From $12,985. Onsite Instruments, 855 Maude Ave, Mountain View, CA 94043. Phone (415) 964-9800. FAX (415) 964-9808. Circle No. 399

Qualifier/tester for Fast-SCSI disk drives. The PR4050 tester transfers data synchronously at 10 Mbytes/sec and can test disk drives and optical memories without your having to remove them from your system. It acts as a passive monitor or an active tester and sometimes tests drives without interfering with normal system operation. From $8750. Pioneer Research, 1745 Berkeley St, Santa Monica, CA 90404. Phone (800) 233-1745; (310) 829-6751, ext 202. Circle No. 400
Samtec SMT solutions assure a safe landing!

Nobody knows more about surface mount interconnects than Samtec.

Samtec surface mount Strips, DIP's and PLCC's are designed for automated assembly, VP or IR soldering and to optimize electrical and mechanical properties.

Our new Surface Mount Guide shows thousands of Interconnect solutions. And, if you don’t see the solution you need, we’ll design one to satisfy your most demanding application. Call today.

1-800-SAMTEC-9

Samtec

IS SUDDEN SOLUTIONS

New Albany, Indiana USA • Cumbernauld, Scotland UK • Singapore
SAMTEC, INC. P.O. Box 1147 • New Albany, IN 47151-1147 USA • Phone 812-944-6733 • Fax 812-948-5047 • TWX 810-540-4095 • Telex 333-918

CIRCLE NO. 155
Where have Siliconix' industry leading analog switches been for the past twenty years?

**BETWEEN A ROCK AND A HARD PLACE.**

Over the years you've used our analog switches in products that have been from the rocky surface of Mars to hard places such as disk drives, oil drilling rigs, Patriot Missiles, and every application in between. We've been there for you — and been there first. Enabling you to cut your time to market and stay ahead of your competitors.

**Timely technology leadership.**

We were first with the DG200 Series. First with the DG400 Series of analog switches and multiplexers. And first again with the DG600 Series. That's what technology leadership is all about — being first to supply you with the industry's top performing devices.

**Proven process capability.**

The DG400 Series is based on a high-voltage silicon-gate process technology utilizing thinner gate oxides, smaller feature sizes, and lower device thresholds. The result — faster switching, lower on-resistance, lower leakage, less power consumption, tougher ESD tolerances, and higher reliability. And our new DG600 Series is even faster!

**Where do we go from here?**

To more rocks and hard places? Probably. Up in the air? Definitely — in the new video-on-demand systems coming soon to major airlines.

To learn more about our continuing commitment to technology leadership in analog switches contact your local Siliconix sales office. Or call our toll-free hot line now! **1-800-554-5565, Ext. 967.** Ask for your "Analog Switch Design Kit." And remember, when it comes to analog switches, there is only one industry leader. Siliconix.

Siliconix
2201 Laurelwood Road, Santa Clara, CA 95056
Siliconix, Inc. © Copyright 1991 Siliconix, Inc.
**Step Motors**
- Operate from 115 or 230V ac
- Offer full- and half-step resolutions

The dual-axis step-motor packages in the P42 Series operate from either 115 or 230V ac inputs. Each package offers full- and half-step resolutions, static torques ranging from 20 to 150 oz-in., and speeds in excess of 1800 rpm. Packages come complete with two motors, two drives, power supply, integral heat sink, mounting brackets, cabling, and connectors in a full enclosure. The package generates its own 5V logic power for internal optical isolation circuitry. The power section provides DIP-switch-selectable currents from 0.3 to 3.5A/phase to the motor windings and will drive motors rated as high as 5A/phase. $845 for a package containing two size 23 motors.

**American Precision Industries Inc**, 4401 Genesee St, Buffalo, NY 14225. Phone (716) 631-9800. FAX (716) 631-0152. Circle No. 421

**Frequency Multiplier**
- Available in through-hole or surface-mount package
- Generates a TTL output

The MDDFM-TTL frequency multiplier is available in through-hole or surface-mount (gull- or J-lead) packages. The unit provides a TTL square-wave output at selected clock frequencies that are synchronized to a lower-frequency clock. In a typical application, the module can generate a clock that is a multiple of the system clock and phase-locked to the system clock. During a system-clock cycle, you can use the multiplier’s clock to process additional information. If no synchronizing input is present, the module will free-run, providing a square-wave output that is accurate within ±2% of the desired frequency. The module generates 38 clock frequencies over a 2- to 100-MHz range; each output can drive 10 TTL loads. Less than $12 (100).

**Engineered Components Co**, Box 8121, San Luis Obispo, CA 93403. Phone (800) 235-4144; (805) 544-3800. Circle No. 422

**Pressure Transducer**
- Handles industrial environments
- Employs capacitive technology

The Model 208 gauge-pressure transducer handles the extreme conditions encountered in industrial environments. The unit employs a sensing element consisting of a flattened stainless-steel pressure tube with parallel plates bonded to its two opposing external flats to form a sensitive capacitor. Pressure changes cause a minute change in distance between the plates to produce a measurable change in capacitance. An IC-based circuit converts the capacitance change to a dc signal. The unit maintains a ±0.25% accuracy and a 0.1% hysteresis. Full-scale pressure-measuring capability ranges from 25 to 10,000 psig. Less than $100 (OEM qty).

**Setra Systems Inc**, 45 Nagog Park, Acton, MA 01720. Phone (508) 263-1400. Circle No. 423
**EDN·NEW PRODUCTS**

**Components & Power Supplies**

**PC-board connectors.** These surface-mount DIN connectors feature compliant contacts to minimize stress from thermal expansion. Housing material carries a UL 94V-0 rating. $0.77 to $2.52 for an 8-position model. **AMP Inc., Box 3608, Harrisburg, PA 17105. Phone (800) 522-6752. Circle No. 424**

**ECL oscillators.** E500 Series clock oscillators are available in through-hole and surface-mount versions. Operating temperatures range from 0 to 70°C or from −40 to +85°C range. Stabilities down to 25 ppm are available. $43.90 for a 120-MHz model. **Connor-Winfield Corp, 1865 Selma Rd, Aurora, IL 60505. Phone (708) 851-4722. FAX (708) 851-5040. Circle No. 425**

**LED indicators.** VL Series indicators are available in 0.236- and 0.314-in.-diameter, mounting-bushing sizes. A choice of two bezel styles is available for each bushing size. Available LED colors include red, yellow, or green. The units are available with optional sealing that meets IP67 requirements. $1.25 (1000). **MORS/ASC, Box 544, Wakefield, MA 01880. Phone (617) 246-1007. FAX (617) 245-4531. Circle No. 426**

**Axial-leaded chokes.** Series 90 chokes have 48 values ranging from 0.1 to 1000 µH. They are available with 10% tolerance as standard or an optional 5 and 3%. The chokes in an encapsulated package feature an epoxy coating. $0.11 (10,000). **Coilcraft, 1102 Silver Lake Rd, Cary, IL 60013. Phone (708) 639-6400. Circle No. 427**

**Zero-insertion-force connector.** The DL5 260 ZIF connector can accommodate #18 through #36 AWG wire and is rated for 10,000 cycles. It’s available with optional metal housings for the plug and receptacle to provide EMI/RFI shielding. The contacts are rated for 6A and handle 1200V ac voltage levels. Less than $100 (OEM qty). **ITT Cannon, 1851 E Deere Ave, Santa Ana, CA 92705. Phone (714) 757-8221. Circle No. 428**

**High-temperature capacitors.** LMU Type capacitors are rated for 105°C operation. Capacitance values range from 330 to 1500 pF, and working voltage ratings range from 200 to 400V dc. Standard tolerance equals ±20%. $1.45 (1000). **Illinois Capacitor Inc, 3757 W Touhy Ave, Lincolnwood, IL 60645. Phone (708) 675-1760. FAX (708) 673-2850. Circle No. 429**

**Lighted switch.** Model 8128 spst illuminated momentary switches mount to the front panel. The units accommodate T-1 flange-based lamps. The switches
can be mounted on 0.5-in. centers and have a life of 100,000 actuations. Switch contacts are rated for 30V dc or 115V ac; current rating equals 1A resistive or 0.25A inductive. $8.50 (100). Electro-Mech Components Inc, 1826 N Flora-dale, South El Monte, CA 91733. Phone (818) 442-7180. Circle No. 430

Coaxial adapter. Model 9343 is a 50Ω mini-UHF female to mini-UHF female coaxial adapter. It covers a dc to 2-GHz range and operates from −65 to +165°C. The adapter has a brass, nickel-plated body and employs Teflon insulation and a gold-plated contact. $3.95. Pasternack Enterprises, Box 16759, Irvine, CA 92713. Phone (714) 261-1920. — Circle No. 431

0.25-in.-square mixer. Housed in a surface-mount package, the PPM-1852L double-balanced mixer spans a 5- to 18-GHz frequency band on the LO and RF ports. Conversion loss versus frequency is flat within +2 dB, and maximum conversion loss equals 8 dB. VSWR at the LO and RF ports measures 3.5:1 and 2.5:1, respectively. $146 (100). Delivery, stock to six weeks ARO. Avantek Inc, 481 Cottonwood Dr, Milpitas, CA 95035. Phone (800) 282-6835; (408) 943-3068. Circle No. 432

DIP sockets. Series SKD narrow DIP sockets feature 24- and 28-pin counts. Available with or without decoupling capacitors, the sockets have a mounted profile of 0.016 in. and feature a thermoplastic polyester housing, which carries a UL 94V-0 rating. From $0.03 to $0.10/contact. Socket Express, 100 Jersey Ave, Building B-202, Brunswick, NJ 08903. Phone (908) 247-9500. FAX (908) 247-9816. Circle No. 433

Power supplies. HD3003 Series 300W power supplies feature outputs of 5, 12, 15, 24, or 28V. They operate from 3-phase inputs and feature an internal EMI filter. Overload, overvoltage, and short-circuit protection are standard. You can run as many as five supplies in parallel without using external decoupling diodes. $3100. Rantec Microwave & Electronics Inc, 24063 Ventura Blvd, Calabasas, CA 91302. Phone (818) 591-8189. Circle No. 434

Enclosures. The Omega Deskmate 8, 10, and 14 models offer 8-, 10-, or 14-slot capacity, respectively. All include card cage, power supply, wiring, and a cooling system. The enclosures have a 10-layer monolithic J1-J2 backplane as well as a J3 power-ground backplane. From $2995. Electronic Solutions, 6790 Flanders Dr, San Diego, CA 92121. Phone (800) 854-7086; (619) 452-9333. TWX 910-335-1169. Circle No. 435

Transformers. HPI line frequency transformers are rated at 2, 2.75, and 3.5 kVA. All three models feature dual mode operation!). And our low (3 to 7 mW) input drive gives you the flexibility to meet your design needs.

That’s AT&T “Customerizing.”

AT&T now offers one of the industry’s most complete portfolios of high-voltage, <1 amp solid-state relays (SSRs).

State of the art in variety
Our new LH1500 line includes normally open (1 Form A). Normally closed (1 Form B). And combinations (1 Form A/B, C; 2 Form A; Dual Form A; Dual Form B). All offer logic-level Input Control, and come in 6 or 8 pin DIPs, through-hole or surface-mountable. That’s what we mean by “Customerizing.”

State of the art in performance
Our LH1500 SSRs offer 3750V Input/Output isolation. Built-in current limiting. And on-resistances as low as 3 ohms (lower in DC mode operation!). And our low (3 to 7 mW) input drive gives you the flexibility to meet your design needs.

State of the art in reliability
Current limiting protects against unwanted transients. Built-in break-before-make reduces component count. Advanced silicon technology adds ruggedness by reducing number of internal wire bonds. All designed by AT&T Bell Laboratories to meet UL, C.S.A. and B.A.B.T. standards.

To sample an AT&T SSR or to place an order, call your AT&T local distributor. For more information, just call AT&T at 1 800 372-2447, ext. 628. In Canada: 1 800 553-2448, ext. 628.

CIRCLE NO.157
Giving customers a choice. It's just another way OakGrigsby stands apart from the competition. By offering you the convenience of a single source for both optical switches and optical potentiometer applications.

Replacing your electromechanical switches and potentiometers has never been so easy or affordable! OakGrigsby's advanced optical technology eliminates metal fatigue, while our vibration-resistant interlock design assures perfect alignment of components. The result: improved accuracy, longer life, and no improper output code problems!

From prototype development through prompt delivery of your order, customer satisfaction is our goal. Discover today's most progressive electronics manufacturer. Discover the new OakGrigsby!
primaries with taps at 100, 115, and 230V and dual secondaries with 115 and 230V taps. Reinforced bobbins and high-temperature magnet wire are used in all models. The units feature a 95% efficiency, 5 to 7% regulation, and 4000V rms isolation. $368 to $450. Signal Transformer Co Inc, 500 Bayview Ave, Inwood, NY 11696. Phone (516) 239-5777. Circle No. 436

Terminal blocks. ELFT Series terminal blocks are available in versions with 2 to 24 positions. Pin spacings of 0.2 in. and 5 mm are available. The units accept wires from the top or bottom and feature a termination scheme that traps the wire and contact between nonrotating parallel surfaces. The blocks accept wire sizes ranging to #12 AWG. 8-position connector, $4 (small qty). PCD Inc, 2 Technology Dr, Peabody, MA 01960. Phone (508) 532-8800. FAX (508) 532-6800. Circle No. 437

Electrolytic capacitors. Type ILS aluminum electrolytic capacitors operate from —40 to +85°C. Capacitance values range from 0.1 to 100 µF. Standard tolerance values equal ±20 or ±10%. Leakage current measures 0.4 µA, and working voltage values range from 10 to 50V dc. $0.096 (1000). Illinois Capacitor Inc, 3757 W Touhy Ave, Lincolnwood, IL 60745. Phone (708) 675-1760. FAX (708) 673-2850. Circle No. 438

Surface-mount adapters. These surface-mount PLCC (plastic-leaded-chip-carrier) adapters interconnect a daughter card via a PLCC socket on a mother board. The phosphor bronze contacts feature 30 µin. of gold plating. The housing material accommodates all soldering processes. $15 (500) for a 68-pin unit. McKenzie Technology, 44370 Old Warm Springs Blvd, Fremont, CA 94538. Phone (510) 651-2700. Circle No. 439

Temperature controller. The Series 1400 controller provides alarm or temperature control. The front panel is splash proof. Inputs include thermocouple, RTD, and thermistor. Scales are calibrated in F and C. An LED deviation indicator shows when the temperature is below, at, or above the set value. From $99. Love Controls Corp, 1475 S Wheeling Rd, Wheeling, IL 60090. Phone (312) 541-3232. Circle No. 440

Polyester capacitors. Type RBE polyester box capacitors pass UL 94V-0 and Bellcore flammability specifications. Capacitance values range to 10 µF with voltage ratings ranging from 50 to 630V dc. The units are available with lead spacings of 5, 7.5, 10, 15, 22.5, and 27.5 mm. $0.20 (1000) for a 0.1-µF, 50V, 5-mm unit. Aerovox, 742 Belleville Ave, New Bedford, MA 02745. Phone (508) 999-1000. Circle No. 441

UNIVERSAL INPUT SWITCHING POWER SUPPLIES

FEATUREING:
- 90-264 VAC (continuous) UNIVERSAL INPUT
- FCC CLASS 'B', VDE 0871 'B' OPTIONAL
- HIGH SURGE CURRENTS ON +12V OUTPUTS
- PRICE, DELIVERY AND QUALITY

<table>
<thead>
<tr>
<th>WATTS</th>
<th>MODEL NUMBER</th>
<th>OUTPUT 1</th>
<th>OUTPUT 2 (Peak)</th>
<th>OUTPUT 3</th>
<th>SIZE in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>UPS20-5002</td>
<td>+5V @ 1.6A</td>
<td>+12V @ 1.0A (2.0)</td>
<td>-12V @ 0.3A</td>
<td>3.0 x 4.0</td>
</tr>
<tr>
<td>30</td>
<td>UPS30-4003</td>
<td>+5V @ 1.5A</td>
<td>+12V @ 1.5A (3.0)</td>
<td>-12V @ 0.3A</td>
<td>5.1 x 2.8</td>
</tr>
<tr>
<td>40</td>
<td>UPS40-1002</td>
<td>+5V @ 3.0A</td>
<td>+12V @ 2.0A (4.5)</td>
<td>+12V @ 2.0A (4.5)</td>
<td>2.0 x 7.0</td>
</tr>
<tr>
<td>40</td>
<td>UPS40-2002</td>
<td>+5V @ 3.0A</td>
<td>+12V @ 2.0A (4.5)</td>
<td>+12V @ 2.0A (4.5)</td>
<td>3.0 x 5.0</td>
</tr>
<tr>
<td>40</td>
<td>UPS40-2003</td>
<td>+5V @ 3.0A</td>
<td>+12V @ 2.0A (4.0)</td>
<td>-12V @ 0.3A</td>
<td>3.0 x 5.0</td>
</tr>
<tr>
<td>50</td>
<td>UPS50-1002</td>
<td>+5V @ 3.0A</td>
<td>+12V @ 3.0A (5.5)</td>
<td>+12V @ 3.0A (5.5)</td>
<td>2.0 x 7.0</td>
</tr>
<tr>
<td>50</td>
<td>UPS51-2002</td>
<td>+5V @ 3.0A</td>
<td>+12V @ 3.0A (5.5)</td>
<td>+12V @ 3.0A (5.5)</td>
<td>3.0 x 5.0</td>
</tr>
<tr>
<td>65</td>
<td>UPS65-1002-X</td>
<td>+5V @ 3.5A</td>
<td>+12V @ 3.5A (7.0)</td>
<td>+12V @ 3.5A (7.0)</td>
<td>3.5 x 6.0</td>
</tr>
<tr>
<td>65</td>
<td>UPS65-1003</td>
<td>+5V @ 6.0A</td>
<td>+12V @ 2.5A (4.0)</td>
<td>-12V @ 0.5A</td>
<td>3.5 x 6.0</td>
</tr>
</tbody>
</table>

SINGLE AND QUAD OUTPUT MODELS ARE AVAILABLE.

CALL NOW...
818-341-6123

CIRCLE NO. 159

EDN April 23, 1992 • 219
PC-based circuit analysis just became faster. More powerful. And a lot easier. Because MICRO-CAP IV is here. And it continues a 12-year tradition of setting CAE price/performance standards.

Put our 386/486 MICRO-CAP IV to work, and you'll quickly streamline circuit creation, simulation and edit-simulate cycles — on circuits as large as 10,000 nodes. In fact, even our 286 version delivers a quantum leap upward in speed. Because, for one thing, MICRO-CAP IV ends SPICE-file-related slowdowns; it reads, writes and analyzes SPICE text files and MC4 schematic files. It also features fully integrated schematic and text editors. Plus an interactive graphical interface — windows, pull-down menus, mouse support, on-line HELP and documentation — that boosts speed even higher.

Now sample MICRO-CAP IV power. It comes, for example, from SPICE 2G.6 models plus extensions. Comprehensive analog behavioral modeling capabilities. A massive model library. Instant feedback plotting from real-time waveform displays. Direct schematic waveform probing. Support for both Super and Extended VGA.

And the best is still less. At $2495, MICRO-CAP outperforms comparable PC-based analog simulators — even those $5000+ packages — with power to spare. Further, it's available for Macintosh as well as for IBM PCs. Write or call for a brochure and demo disk. And experience firsthand added SPICE and higher speed — on larger circuits.

1021 S. Wolfe Road
Sunnyvale, CA 94086
(408) 738-4387 FAX (408) 738-4702
DSP Multimedia Environment

- Real-time OS and multimedia modules
- Software-development tools for DSP3210

The VCOS Multimedia Development Environment (VMDE) for the AT&T DSP3210 digital signal processor enables PCs to perform multimedia DSP tasks. The software includes modules for real-time speech coding, fax and data modems, MPEG and P*64 audio, and JPEG still-image compression and decompression. It also includes an operating system, VCOS, that allows real-time execution of those modules. VCOS consists of a DSP-resident kernel and a host-resident application server. Your application program makes calls to the appropriate multimedia modules; the VCOS application server (VCAS) then loads the necessary routines and data from PC memory into the DSP3210's on-chip memory, manages execution of the routines, and returns results to the application.

C/C++ Development System

- For developing small, fast Windows programs
- Contains tools for Windows 3.1

Microsoft's C/C++ version 7.0 Development System for Windows helps you develop small, fast applications for Windows. The system contains development tools for the latest Windows release, 3.1. Its Windows tool kit includes a Windows debug kernel, Windows setup tools, a new version of the Code View debugger, a faster Programmer's Workbench, and the Qualitas 386MAX memory manager to ease memory constraints during development. The C/C++ compiler conforms to the AT&T 2.2 specification; it generates correct object code from even the most complex or obscure expressions. Users of previous versions of C and C++, including Microsoft C, Borland C++, Watcom C, and Zortech C++, can upgrade for a reduced fee. C/C++ 7.0, $499; upgrade (in US only), $139.

Microsoft Corp, 1 Microsoft Way, Redmond, WA 98052. Phone (206) 882-8080. Circle No. 401

“Live” Electronic Handbooks

- Reference books on disk
- Formulas compute with your plugged-in values

With these electronic handbooks now on disk and CD-ROM, you can display equations, formulas, and diagrams. More importantly, you can interactively use that information for your own computations. Reference equations and formulas are “live,” reflecting any changes you make in them by computing new results, much like a spreadsheet program reflects the results of an altered cell. Three of the handbooks are electronic versions of popular references from McGraw-Hill and CRC: Machine Design and Analysis, Standard Handbook of Engineering Calculations, and The CRC Materials Science and Engineering Handbook. A fourth book, The Mathcad Treasury, comes from the software supplier. Equations in the handbooks work automatically with the supplier's Mathcad software. If, for example, you change a parameter in a sample computation, a new answer automatically appears. Even if you alter a formula, a new answer reflects the changed formula. You can also cut and paste portions of the electronic books into a separate document. Individual books, $99 to $149; CD-ROM set, $199.

Mathsoft Inc, 201 Broadway, Cambridge, MA 02139. Phone (617) 577-1017. Circle No. 402
Design simulator. The Apex Plus simulator for analog and mixed-mode circuits combines features of the Intergraph Integrated Simulator (ISIM) and the Dazix Apex simulator. It is available on workstations from Intergraph and Sun Microsystems. $15,000. Dazix, the Dazix Apex simulator. It is available on workstations from Intergraph and Sun Microsystems. $15,000. Dazix, 1 Madison Industrial Park, Huntsville, AL 35884. Phone (205) 730-2000. FAX (205) 730-8344. Circle No. 403

Software development kit. The C860 software development tool kit includes a DOS-based C cross-compiler that generates code for the 64-bit i860 µP. The kit also contains an assembler, a linker, utilities, and a source-level software debugger. $4000. Intel Corp, Literature Packet #BP45, Box 7641, Mt Prospect, IL 60056. In US and Canada, phone (800) 874-6835. Circle No. 404

Schematic editing utilities. SDT Utilities 1.0 provides automated schematic editing and annotation of OrcAD Schematics. An intersheet-reference feature marks schematics with source and destination sheet numbers for all off-sheet signals. The software runs on PCs. $99. Robertson Engineering, 3721 Arlen Ct, San Jose, CA 95132. Phone (408) 946-1200. Circle No. 405


Background-mode emulator. The Performance Plus Model of the EST Series 300 is a background-mode emulator for the Motorola 68332, 68331, 68340, and 68300. It provides software performance analysis through Motorola’s background-mode debugging port. The emulator costs less than an in-circuit emulator and is less intrusive than a ROM monitor. $3050. Embedded Support Tools Corp, 10 Elmwood St, Canton, MA 02021. Phone (617) 828-5588. FAX (617) 828-7941. Circle No. 409

Data-acquisition tutorial. Direct View is a disk-based tutorial on I/O boards that simplifies learning about data acquisition. It covers transducer wiring, signal conditioning, board jumpers, A/D input ranges, interrupt levels, and more. Free. Adac Corp, 70 Tower Office Park, Woburn, MA 01801. Phone (617) 935-6668. FAX (617) 938-6553. Circle No. 410

Graphical-user-interface builder. User Interface Builder (UIB) for X-Windows-based C++ applications lets you develop graphical user interfaces (GUIs) that are dynamically switchable between OSF/Motif and Open Look. The software is tightly integrated with the supplier’s C++ Object Interface library. Including library, $2995; binary, $995; source code, $25,000. Solbourne Computer Inc, 1900 Pike Rd, Longmont, CO 80501. Phone (303) 678-4626. FAX (303) 678-4716. Circle No. 411

CASE for OOA, OOD, and OOP. Objectmodeler is a CASE tool that aids in object-oriented analysis, object-oriented design, and object-oriented programming. It uses methods developed by Peter Coad, Ed Yourdon, and Grady Booch; it works with C++, $995. Iconix Software Engineering Inc, 2800 28th St, Suite 320, Santa Monica, CA 90405. Phone (310) 458-0062. Circle No. 406

Where you can learn a little black magic.

If you'd like to learn a few new tricks in analog design, check the schedule of the Analog Devices Advanced Linear Design Seminar below and then reserve your space by calling 1-800-ANALOGD (in Canada, call 617-937-1430) today.

NORTH AMERICA

<table>
<thead>
<tr>
<th>City</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleveland, OH</td>
<td>May 5</td>
</tr>
<tr>
<td>Detroit, MI</td>
<td>May 6</td>
</tr>
<tr>
<td>Santa Clara, CA</td>
<td>May 7</td>
</tr>
<tr>
<td>Burlington, MA</td>
<td>May 7</td>
</tr>
<tr>
<td>Pleasanton, CA</td>
<td>May 8</td>
</tr>
<tr>
<td>Milwaukee, WI</td>
<td>May 11</td>
</tr>
<tr>
<td>San Diego, CA</td>
<td>May 11</td>
</tr>
<tr>
<td>Chicago, IL</td>
<td>May 12</td>
</tr>
<tr>
<td>Irvine, CA</td>
<td>May 12</td>
</tr>
<tr>
<td>Houston, TX</td>
<td>May 13</td>
</tr>
<tr>
<td>Woodland Hills, CA</td>
<td>May 13</td>
</tr>
<tr>
<td>Dallas, TX</td>
<td>May 14</td>
</tr>
<tr>
<td>Phoenix, AZ</td>
<td>May 14</td>
</tr>
<tr>
<td>Dayton, OH</td>
<td>May 15</td>
</tr>
<tr>
<td>Denver, CO</td>
<td>May 15</td>
</tr>
<tr>
<td>Minneapolis, MN</td>
<td>May 18</td>
</tr>
<tr>
<td>Huntsville, AL</td>
<td>May 18</td>
</tr>
<tr>
<td>Waterbury, CT</td>
<td>May 19</td>
</tr>
<tr>
<td>Atlanta, GA</td>
<td>May 19</td>
</tr>
<tr>
<td>Whippney, NJ</td>
<td>May 20</td>
</tr>
<tr>
<td>Tampa, FL</td>
<td>May 20</td>
</tr>
<tr>
<td>Smithtown, NY</td>
<td>May 21</td>
</tr>
<tr>
<td>Orlando, FL</td>
<td>May 21</td>
</tr>
<tr>
<td>Santa Clara, CA</td>
<td>May 27</td>
</tr>
<tr>
<td>Rochester, NY</td>
<td>May 27</td>
</tr>
<tr>
<td>Beaverton, OR</td>
<td>May 28</td>
</tr>
<tr>
<td>Toronto, Can</td>
<td>May 28</td>
</tr>
<tr>
<td>Bellevue, WA</td>
<td>May 29</td>
</tr>
<tr>
<td>Montreal, Can</td>
<td>May 29</td>
</tr>
<tr>
<td>Waltham, MA</td>
<td>June 1</td>
</tr>
<tr>
<td>Raleigh, NC</td>
<td>June 2</td>
</tr>
<tr>
<td>Ft. Washington, PA</td>
<td>June 3</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>June 4</td>
</tr>
<tr>
<td>McLean, VA</td>
<td>June 5</td>
</tr>
</tbody>
</table>

EUROPE

<table>
<thead>
<tr>
<th>City</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copenhagen, Denmark</td>
<td>May 4</td>
</tr>
<tr>
<td>Berlin, Germany</td>
<td>May 5</td>
</tr>
<tr>
<td>Wiesbaden, Germany</td>
<td>May 6</td>
</tr>
<tr>
<td>Hamburg, Germany</td>
<td>May 7</td>
</tr>
<tr>
<td>München, Germany</td>
<td>May 8</td>
</tr>
<tr>
<td>Vienna, Austria</td>
<td>May 11</td>
</tr>
<tr>
<td>Zürich, Switzerland</td>
<td>May 12</td>
</tr>
<tr>
<td>Lyon, France</td>
<td>May 13</td>
</tr>
<tr>
<td>Paris, France</td>
<td>May 14</td>
</tr>
<tr>
<td>London, England</td>
<td>May 15</td>
</tr>
<tr>
<td>Edinburgh, Scotland</td>
<td>May 18</td>
</tr>
<tr>
<td>Eindhoven, Netherlands</td>
<td>May 19</td>
</tr>
<tr>
<td>Stockholm, Sweden</td>
<td>May 20</td>
</tr>
<tr>
<td>Rome, Italy</td>
<td>May 21</td>
</tr>
<tr>
<td>Milan, Italy</td>
<td>May 22</td>
</tr>
</tbody>
</table>

Far East and Japan seminars to be held in June. Please call 1-617-937-1430 for schedule.
If you've always thought linear design involved a little black magic, here's where you can learn a few of the tricks.

If you're one of the few engineers who realizes the world of analog design isn't all that mysterious, you'll appreciate our Advanced Linear Design Seminar. Because it's the perfect opportunity to pick up a few new tricks.

Hosted by Analog Devices, one of the leading suppliers of analog and mixed-signal ICs, and its distributors, the seminar series will include talks by prominent design wizards such as Derek Bowers, Paul Brokaw, Lou Counts, Barrie Gilbert, Walt Jung, and others.

The full-day tutorials also include solutions-oriented discussions that are geared towards showing you how to increase system performance while actually lowering overall cost. Plus you'll get free product samples, our 700-page Amplifier Applications Guide, other technical reference materials, and more.

Admission to the seminar is just $20, and it includes everything above, lunch, and refreshments.

So if you're a design wizard who wants to add to your repertoire of linear design tricks, it's no secret what you should do — call 1-800-ANALOGD (in Canada, call 617-937-1430) and reserve a seat today. Before they all disappear.

The Analog Devices Advanced Linear Design Seminar.
3M Lowers Cost of High Temperature Electrical Tapes

New proprietary film matched with acrylic and silicone adhesives for UL Class 155°C/180°C

AUSTIN, Tex. — Two newly developed high temperature electrical insulating tapes are lower priced than current tape constructions now on the market. The secret is in matching new tough proprietary film with appropriate high temperature adhesives.

Scotch™ Electrical Tape 72 is thin, high temperature resistant, light tan, and semi-opaque. It is combined with an acrylic pressure-sensitive adhesive, and is UL Recognized for continuous use at temperatures not exceeding 155°C, for class F operating components.

Scotch™ Electrical Tape 73 is thin, high temperature resistant, light brown, and semi-transparent. It is combined with a silicone pressure-sensitive adhesive, and is UL Recognized for continuous use at temperatures not exceeding 180°C, for class H operating components.

Typical high temperature electrical insulating applications are in motors, coils, transformers, TV yoke/deflection magnets, wrap and fill capacitors, and similar electrical and electronic products.

Both tapes are flame retardant, flagging resistant and meet NASA outgassing requirements.

Permanently printable using conventional tape printing equipment. Standard widths from 1/16" to 4". Custom slitting available.

For more information, contact a 3M Electrical Specialties Division representative or authorized distributor or call 1-800-233-3636.

3M Electrical Specialties Division
PO Box 2963
Austin, TX 78769-2963

CIRCLE NO. 162

Filter-synthesis software. A filter-synthesis option for the supplier’s Design Center package synthesizes passive LC ladders. It lets you compute and evaluate inductor and capacitor values by selecting either minimum-inductor or maximum-capacitor configurations. A preference screen allows you to configure your filter synthesis for the kind of work you usually do. A Bode-plot menu lets you examine linearized phase and phase delay. $900. Microsim Corp, 20 Fairbanks, Irvine, CA 92718. Phone (800) 245-3022; (714) 770-3022. FAX (714) 455-0554. Circle No. 412

Project-management software for Windows 3.0. Project for Windows 3.0 incorporates the top 10 requests from users of earlier software. New features include a customizable tool bar; customizable views, menus, tables, and charts; and planning “wizards” that provide user help. The software also includes improved graphing and printing capabilities. $995. Microsoft Corp, 1 Microsoft Way, Richmond, WA 98052. Phone (206) 882-8080. FAX (206) 936-7329. TLX 160520. Circle No. 413

Schematic capture and simulation framework. Pads-View is an OEM version of Workview from Viewlogic. An integrated schematic capture and simulation framework, it lets you create discrete, partially integrated, and fully integrated designs and predict their performance. It comes in several versions with varying levels of capability. From $4000. Pads Software Inc, 119 Russell St, Suite 6, Littleton, MA 01460. Phone (508) 486-9521. FAX (508) 486-8217. Circle No. 414

Data-management software. Voice 2.0 (Virtual Office Information for Corporate Environments) is a document-management package that allows you to store, search, and retrieve data from optical disk. The software allows you to search files in their native formats. The software runs on PCs and comes with image-compression and print-accelerator plug-in boards. $9950. Indus Mis Inc, 340 S Oak St, West Salem, WI 54669. Phone (800) 843-9377; (608) 786-0900. FAX (608) 786-0786. Circle No. 415

Character-Recognition API. The Scanworx application-program interface allows use of the supplier’s Intelligent Character Recognition (ICR) software in applications. It includes the ICR software, documentation, and demonstration programs. $10,000 for 10 seats. Xerox Imaging Systems Inc, 9 Centennial Dr, Peabody, MA 01960. Phone (508) 977-2000. FAX (508) 977-5307. Circle No. 419

68302 Model. The 68302 Smartmodel is a behavioral-level simulation model for Motorola's 68302 integrated multi-protocol processor. It enables hardware designers to develop, debug, and optimize the operation of 68802-based designs before committing to the time and expense of physical prototypes. Logic Automation requires you to purchase a Smartmodel licensing fee separately. Motorola 1-time fee, $4000. Motorola Inc, 6501 William Cannon Dr W, Austin, TX 78735. Phone (512) 891-9494. Circle No. 416


Software converter. Nth PortableGL allows application software developed on a Silicon Graphics workstation to run on any Sun SPARCstation. The software contains a graphics library that is call-string-compatible with Silicon Graphics' IRIS GL version 4.0. $9900. Nth Graphics, 1908 Kramer Lane, Suite A, Austin, TX 78758. Phone (800) 624-7552; (512) 882-1944. FAX (512) 882-5954. Circle No. 418

Analog-parts libraries. Analog Parts I and Analog Parts II are optional libraries for the supplier's Precise circuit simulator. Analog Parts I contains models from Device Modeling Technology; it covers 8500 devices from manufacturers in the US, Japan, and Europe. Analog Parts II contains models from Linear Technology, Burr-Brown, Motorola, and Texas Instruments. Parts I, $9500; Parts II, free. Electrical Engineering Software Inc, 4675 Stevens Creek Blvd, Suite 200, Santa Clara, CA 95051. Phone (408) 296-8151. FAX (408) 296-7563. TLX 171201. Circle No. 419

Analog Parts II, free. Electrical Engineering Software Inc, 4675 Stevens Creek Blvd, Suite 200, Santa Clara, CA 95051. Phone (408) 296-8151. FAX (408) 296-7563. TLX 171201. Circle No. 419

Character-Recognition API. The Scanworx application-program interface allows use of the supplier's Intelligent Character Recognition (ICR) software in applications. It includes the ICR software, documentation, and demonstration programs. $10,000 for 10 seats. Xerox Imaging Systems Inc, 9 Centennial Dr, Peabody, MA 01960. Phone (508) 977-2000. FAX (508) 977-5307. Circle No. 420
High power DC switchers with IEEE-488 programmability from E/M offers a significant size and weight advantage. But, just as important, with E/M you don't sacrifice high efficiency or precise regulation. And, E/M gives you experience that dates back to 1969 when we introduced our first switching power supply. Since then E/M has invested over one million dollars in the engineering and development of several product lines of switchers. E/M known and respected world-wide.

For more information or literature, contact:
Electronic Measurements, Inc.,
405 Essex Road, Neptune, NJ 07753
Telephone: 908-922-9300
FAX: 908-922-9334

COMING SOON OUR:
10 KW EMS
IT'S HERE!!!
THE WORLD'S SMALLEST SURFACE MOUNT DIP SWITCH!

It's More Reliable
Three simple components: two composite metal/plastic strips and one plastic molded cover replaces a 25 piece assembly to make a switch that's more reliable because it's more consistent.

SAME SIZE AS AN IC!
If you don't have automatic insertion equipment, we're banking that some day you will. In the meantime, your board will look neater, better and more professional. And if you have insertion equipment, you'll save the cost of hand insertion!

Three New Patent Designs That Use 40% Less Parts
1. The sides are split, or bifurcated, so there are two separate slides for each contact point. This doubles the contact reliability because you have two independent gold plated contacts at each switch point.
2. The switches are flush with the cover to eliminate accidental on-off movement once the DIP is programmed. Simple.
3. The package is sealed. The lead frame is molded directly into the housing to provide a one piece, no leak construction. The cover is ultrasonically welded to the housing after the switch is assembled. There is no better construction. The surface mount housing is made of polyphenylene sulfide with Kapton tape to withstand the high temperatures of the reflow soldering process.
4. The slides are made from beryllium copper, heat tempered to a full hardness, spring formed, plated in a 100 micro inch nickel bath and then spot gold plated 30 micro inch deep at all the contact points. This is the best proven switch contact surface that money can buy.
5. Every one of the switch contact surfaces on the main lead frame are plated with 30 micro inch of gold over 100 micro inch of nickel.

MADE IN AMERICA
The K40 Standard Pin Dip Switch
The K40 standard pin DIP Switch was originally designed by American Research & Engineering in 1982 as the world's smallest DIP Switch. It was with its incredible small size and durability that the K40 standard pin DIP Switch led to the development of the new K40 Surface Mount DIP Switch lineup. Lead time for the K40 standard pin DIP Switch is seven to fourteen days and fourteen to twenty-one days for the K40 Gullwing DIP Switch. All K40 switches are manufactured at our plant in Elgin, Illinois.

FREE SAMPLE! Send Us Your Business Card Stapled To Your Letterhead
AMERICAN RESEARCH & ENGINEERING
1500 EXECUTIVE DRIVE, ELGIN, IL. 60123 1-708-888-7245
FAX (708) 888-7094

THE WORLD'S SMALLEST SURFACE MOUNT DIP SWITCH!

American Research & Engineering's strip molding process makes for a more reliable switch

SAME SIZE AS AN IC!

The K40 Gull Wing Surface Mount Dip Switch

The K40 Surface Mount Dip Switches Are Provided On Tape and Reel per EIA Specifications or In Standard IC Tubes.

All K40 Dip Switches Are Available In Positions Two Thru Eight!

FREE SAMPLE! Send Us Your Business Card Stapled To Your Letterhead

AMERICAN RESEARCH & ENGINEERING
1500 EXECUTIVE DRIVE, ELGIN, IL. 60123 1-708-888-7245
FAX (708) 888-7094

226 • EDN April 23, 1992

CIRCLE NO. 164
ISA Bus Single-Board Computer

- Employs 25-MHz 80386SX µP
- A solid-state disk emulator simulates A, B, or C drives

The IND-386SX single-board computer (SBC) for a passive ISA bus backplane uses a 25-MHz 80386SX µP and can optionally operate with the Chips and Technologies 38605SX Superstate µP. A 4-Mbyte solid-state disk emulator uses standard EPROMs, static RAMs, or flash EPROMs. The emulator simulates A, B, or C drives. The board can program flash EPROM in circuit. ROM space is available for user-defined bootup code and eight general-purpose switches let you specify field-selectable options. Standard features include two serial ports, a parallel port, dual floppy-disk ports, an IDE hard-disk port, a keyboard port, and as much as 16 Mbytes of dynamic RAM. A fully populated board consumes 6W. $895.

VMEbus Single-Board Computer

- Employs a 25-MHz 80386sx µP
- Operates as a bus master and contains slot 1 functions

The XVME-688 VMEbus single-board computer features a 25-MHz 80386SX µP. It also has an 80387SX coprocessor socket, two serial ports, a parallel port, an IDE and floppy-disk-drive port, and a battery-backed time-of-day clock. The board contains 4 SIMM (single-inline-memory-module) sockets to provide as much as 16 Mbytes of zero-wait-state dynamic RAM. A VGA graphics controller and 512 kbytes of video RAM provide 1024×768-pixel graphics. You can also connect the board to standard ISA bus peripheral boards such as Ethernet modules, modems, serial communications boards, and SCSI controllers. The board operates in temperatures from 0 to 65°C and noncondensing humidities from 0 to 95%. $1675; $1350 (OEM qty).

Pen Computer

- Operates from 2 AA-size alkaline batteries
- 7¼-in. display has 25 lines of 80 characters each

The Poqetpad is a 1.2-lb, MS-DOS-compatible pen computer. It measures 9.65×4.59×1.26 in. and operates from 2 AA-size alkaline batteries. The handheld computer runs for a minimum of 16 hours on a pair of batteries. You can also power the unit from an optional ac adapter. The computer has a V20HL µP and 640 kbytes of RAM. A 1-Mbyte ROM stores the operating system, pen-support and handwriting-recognition software, and utilities. Its two drives can accommodate two memory cards having as much as 4 Mbytes each. A 7¾-in. diagonal display has 25 lines of 80 characters each. $1995.

Micro Computer Specialists Inc, 2598-g Fortune Way, Vista, CA 92083. Phone (619) 598-2177. FAX (619) 598-2450. Circle No. 442

Penet Computer Corp, 5200 Patrick Henry Dr, Santa Clara, CA 95054. Phone (408) 982-9500. FAX (408) 496-0575. Circle No. 444
Notebook computer. The DLT-2000 is a 20-MHz 80386SX notebook computer, weighing 6.8 lbs. It contains a 3½-in., 40-Mbyte IDE hard-disk drive; an 80-key keyboard; and a VGA LCD screen having 640 x 480 pixels and 32 levels of gray. Standard configuration includes 2 Mbytes of RAM and a 1.44-Mbyte floppy-disk drive. $6295. DTK Computer Inc, 17700 Castleton St, Suite 300, City of Industry, CA 91748. Phone (818) 810-8880. FAX (818) 810-5233.

Graphics controller board. The Winsprint 200 ISA bus graphics controller board has a TI 34020 graphics processor. It displays 16 or 256 simultaneous colors having 1024 x 768 pixels. The board supports VGA passthrough mode, and it has 1 Mbyte of video RAM. $995. Artist Graphics, 2675 Patton Rd, St Paul, MN 55113. Phone (800) 627-8478; (612) 631-7800. Circle No. 446

Color X terminal. The MX600 Network Display Station supports from one to six 1280 x 1024-pixel displays. A single mouse and keyboard control all displays. A virtual screen mode treats multiple displays as a single large display surface. The unit has a thick and thin Ethernet interface and supports TCP/IP and DECnet network protocols. Terminal with 4 Mbytes of RAM, $6500. Jupiter Systems, 1351 Harbor Bay Pkwy, Suite 200, Alameda, CA 94501. Phone (510) 523-9000. Circle No. 447

Transparent intercrate link. The MB2-Mlink-II provides bidirectional DMA channels between two Multibus II crates. Dual DMA controllers and FIFO buffers transfer data over a cable at 10 Mbytes/sec. To send a message from one crate to another you provide an extra byte in the endpoint address to select the destination board. Link consisting of two boards and cable, $6995. General Standards Corp, 8002A Whitesburg Dr, Huntsville, AL 35802. Phone (205) 880-8787. FAX (205) 880-8788. Circle No. 448

PWM motor driver. The PDH-X1 is a PWM servo-motor driver. The 5.2 x 4.8-in. stand-alone board's dc-dc converter has an 85-kHz switching rate that yields a dc to 20-kHz power bandwidth. The board delivers 5A continuous at 60 V dc and 10A pk. $199 (OEM qty). Western Servo Design Inc, 44366 S Grimmer Blvd, Fremont, CA 94538. Phone (510) 266-6255. Circle No. 449

Color-graphics board. The Multi-view 24 graphics board for the ISA bus produces 16.8 million colors. It provides 1024 x 768-pixel noninterlaced resolution and refresh rates as fast as 75 Hz. The board features a VGA passthrough mode and supports 8614/A-compatible

Just as the key to the left can unlock great treasure, the keypad on Kepco’s affordable Digital Power Supply (DPS) unlocks the power of this extraordinary tool.

AT YOUR TOUCH... 75 WATTS OF WELL REGULATED POWER IN FOUR VOLTAGE RANGES.

• An automatic range-select delivers higher current at low voltage settings.
• The digital keypad sets voltage, current limit or over-current cutout and over-voltage trip point.
• Three volatile memory locations to store recallable combinations.
• Fast down-control from an active pull-down circuit.
• RS-232 communications with your PC's serial port. No need for extra cards. Software provided.

5-YEAR WARRANTY

Available from Stock. Call: 718-461-7000. Ask for Martin Lachmanen. He can arrange a demo in your place.

Power tool
Next computer ISDN interface. The ISDN (Integrated Services Digital Network) Extender provides Basic Rate access and an analog telephone connection for Next computers. It has an 8-pin modular connector for the ISDN Basic Rate line and a 6-pin modular RJ11 for the telephone line. The unit runs with application software for the Nextstep Release 3.0 operating system. The stand-alone unit measures 3x5x1 in. and weighs 6 oz. $349. Hayes Microcomputer Products Inc, Box 105203, Atlanta, GA 30348. Phone (404) 840-9200. FAX (404) 441-1238.

Notebook computer. The NB2500 contains a 25-MHz 80386SXL and a SCSI port for connecting six external peripherals. A built-in battery provides more than 3 hours of operation, and an indicator bar visually displays the battery life. Other features include 4 Mbytes of RAM, a 1.44-Mbyte floppy-disk drive, and an LCD VGA screen. Unit with 40-Mbyte hard-disk drive, $1995. Bi-Link Computer Inc, 11606 E Washington Blvd, Whittier, CA 90060. Phone (310) 692-5345.

X terminals. Three X terminals employ RISC (reduced-instruction-set-computer) µPs and display 1280x1024 pixels. The $2895 NCD19r monochrome unit uses a Mips R3000 µP. The $5395 NCD17er color unit uses Motorola's 88100 µP. The $4495 NCD19g grayscale unit also uses the 88100 µP. Delivery, 60 days ARO. Network Computing Devices Inc, 350 N Bernardo Ave, Mountain View, CA 94043. Phone (415) 694-0650.

Bubble-jet copier. The CJ10 desktop color copier uses bubble-jet technology. It produces 400-dpi resolution and 256 colors. Other features include an 8½x11-in. scanning area, a 90-sec copy or print speed, and a 90-sheet cassette paper feeder. You can select prints from 50 to 200% in 1% increments. Less than $10,000. Canon USA Inc, 1 Canon Plaza, Lake Success, NY 11042. Phone (516) 488-6700.

DSP interface board. An ISA bus interface board connects Data Translation's DT-Connect I/O products to Spectrum Signal Processing's DSP boards. It provides a path and a FIFO buffer between a DT-Connect port and Spectrum's DSP-Link interface. $800. Quantawave, 530 Boston Post Rd E, Marlborough, MA 01752. Phone (508) 481-9802. FAX (508) 624-0942.

68040 VMEbus SBC. The MZ 8140 VMEbus SBC (single-board computer) contains a 25-MHz MC68040 µP. It provides as much as 4 Mbytes of dynamic memory. MZ 8140 400000SBC $2050. MZ 905000SBC $2500. MZ 104001SBC $3000. MZ 8140 100000SBC $3500. MZ 905001SBC $4000. MZ 104002SBC $4500.
Why Settle for 1/2 an '040 Board?

You’ve chosen the '040 because you need maximum performance in your VME system. But look carefully, because other Single Board Computers may only give you only half of what you expected from the '040.

Compare Synergy’s SV430 performance to any other SBC. Compare bus speed, MIPS, support, flexibility, documentation, reliability, I/O intelligence or any spec you can think of. We think you’ll find the same thing we did—the

SV430 outperforms every other SBC on the market by as much as 150%. Surprisingly, this kind of quality won’t cost you any extra, because Synergy products lead in another important area—value. At Synergy, you don’t have to pay a premium price for premium performance.

Let us show you just how far ahead your system can be with a Synergy processor board. Call us today, and get the whole '040 story.

Compare our specs. Synergy is superior across the board!

VME Transfers
VME64 doubles bus performance to 66 MB/s—and the SV430 is the only '040 board that has it. But we don’t need VME64 to win this comparison.

Even normal 32-bit transfers race at 33 MB/s. That’s 200% faster than Force or Motorola.

DRAM Burst Rates
A 25 MHz '040 is capable of accessing memory at 80 MB/s. The closer you are to this maximum, the more '040 performance you’re gaining. SV430 bursts are 26% faster than Force and Motorola.

DRAM Random Accesses
Non-burst '040 performance is measured in wait states. Fewer wait states mean higher performance. The SV430 is not only 66% faster than Force or Motorola, it supports twice the on-board memory — 32 MB.

I/O Modules
Synergy’s EZ-Bus modules are compatible with our entire line of SBCs. This means Synergy’s current line of 12 intelligent I/O modules are immediately available for the SV430—today. No other vendor comes close for selection, functionality or availability.

‘020/’030 Compatibility
Software compatibility between Synergy SBCs means users have simple upgrades to the SV430 from our '020 and ‘030 SBCs. Force offers compatibility only from the '030 level, and Motorola offers “upward migration”—a polite phrase that means rewriting your code.

Product Warranty
Synergy backs the reliability of its SBCs with a two year standard warranty. Force and Motorola only offer you one.
Computers & Peripherals

RAM (DRAM), two serial ports, as much as 1 Mbyte of EPROM, 2 kbytes of battery-backed static RAM, two timers, and a battery-backed real-time clock. The SBC includes the company's MXbus for I/O expansion. Board with 1 Mbyte of DRAM, $2995. Mizar Inc, 1419 Dunn Dr, Carrollton, TX 75006. Phone (800) 635-0200; (214) 446-2664. FAX (214) 242-5997. Circle No. 456


VGA color monitor. The HCM-433E 14-in. monitor is compatible with VGA, Super VGA, and IBM's 8514A standard. Its noninterlaced screen displays 640 x 480, 800 x 600, or 1024 x 768 pixels. The monitor features a 70-MHz video bandwidth, RGB analog video inputs, a 0.28-mm dot pitch, and a 56- to 86-Hz vertical scan rate. $649. Hyundai Electronics America, 166 Baypointe Pkwy, San Jose, CA 95134. Phone (408) 473-9200. FAX (408) 943-9567; (408) 943-9568. Circle No. 458

Removable hard-disk drives. The Mercury series is a line of half-height, internal and external removable hard-disk drives. Capacity ranges from 52 Mbytes to 1 Gbyte, and average access times range from 9 to 12 msec. The drives incorporate shock-munt isolators that can withstand a 300g impact. $1129 to $6559. Mega Drive Systems Inc, 489 S Robertson Blvd, Beverly Hills, CA 90211. Phone (310) 247-0006. FAX (310) 247-1667. Circle No. 459

EDN April 23, 1992 • 231
Progress Can Be Yours With The Thousands Of Ideas Waiting For You At

NATIONAL ELECTRONIC PACKAGING AND PRODUCTION CONFERENCE

NEPCON EAST '92

Conference: June 15-18, 1992  ■ Exposition: June 16-18, 1992
Bayside Exposition Center ■ Boston, Massachusetts

At NEPCON East '92 you’ll find everything you need for the design, manufacture and test of printed circuit boards. Attend NEPCON East '92 and see first-hand the thousands of ideas waiting for your electronics manufacturing team.

You’ll find exciting ideas on how you can:

- Shorten your time to market
- Lower your production costs
- Start a Six-Sigma Quality program
- Increase your efficiency with concurrent engineering
- Improve your SMT manufacturing operations

Whether you discover them when you attend the Conference Program or find them in the over 350 exhibiting companies - GREAT IDEAS wait you at NEPCON East '92!

Make plans to attend NEPCON East '92 NOW!...Clip this coupon TODAY to receive your pre-registration materials right away!

Circle No. 183 For Exhibitor Information

For more information contact:
Cahners Exposition Group
Cahners Plaza
1350 East Touhy Avenue
P.O. Box 5060
Des Plaines, IL 60017-5060
Tel.: (708) 299-9311
FAX: (708) 635-1571

© Reed Publishing (U.S.A.) Inc., 1992
Brochures on software development tools and ICs. The 8-pg brochure on 8086, 80C186, and 80C286 software development tools presents a product overview, a feature list, and highlights of these tools. Illustrations and ordering information complete the publication. The 4-pg brochure deals with -186 and -188 ICs (in-circuit emulators), providing an overview, product features and highlights, physical descriptions and characteristics, specifications, and ordering information. Intel Corp, 3065 Bowers Ave, Santa Clara, CA 95051. Phone in Canada and US (800) 548-4725; US only (800) 874-6885; (505) 881-8080. Circle No. 351

Diagnostic line for 86 boards, adapters, and accessories. It also describes a line of PCs for the data-acquisition and control devices, 15 software products, and several motion-control devices, including a robot arm. The theme of the 32-pg, 4-color publication is the Voyager flight past Jupiter, Saturn, Neptune, and other interplanetary bodies in the solar system. It includes several NASA photos of the Voyager journey. The catalog highlights the introduction of 28 networking, IEEE, and other protocol conversions, high-capacity I/O, A/D, and D/A boards, sensors, and other data-acquisition and control products. In addition to Odin, a proprietary A-Bus software system, the booklet lists software systems such as Omnipotence ECS for data-acquisition and control systems. Alpha Products Co, 300 Linwood Ave, Fairfield, CT 06430. Phone (203) 259-7713. Circle No. 353

Directory of computer programs. The US Government Source-Code Directory lists more than 10,000 computer programs from the US government, universities, and companies such as IBM, Digital Equipment Corp, and AT&T. It comes in printed form or on an MS-DOS disk and catalogs design tools and engineering software. Directory sections include electronics, CAD/CAM, VHDL (VHSIC Hardware Description Language) models, signal processing, communications databases, software packages, simulation, laboratory information systems, expert systems, mathematical analysis, and neural networks. $149 (printed or disk); $249 (both), plus $7.50 for handling. Source Translation & Optimization, Box 404, Belmont, MA 02178. Phone (617) 489-3727. Circle No. 354

Monograph on active devices for engineering. The title of the initial publication in the AACE Monograph Series is Active Devices for Engineering Applications. Its purpose is to "give engineers...an organized way...to understand existing active devices and design circuits that function with them with a minimum of tailoring and adjustment." This paper provides an approach to the design and analysis of active circuits that applies to presently available 2-port (typically 3- or 4-terminal) active devices. It develops several new techniques that extend the capabilities for the design of circuits, including high-power transmitting tubes. $11 (includes postage and handling). For sample page, send self-addressed, stamped business-size envelope. AACE Inc, Maryland Office, 2807 Jerusalem Rd, Kingsville, MD 21087. INQUIRE DIRECT

Test accessories cataloged. The 44-pg catalog presents a line of electrical- and electronic-connection test accessories, covering more than 200 products. It describes test leads, BNC and banana plugs, instrument/test interconnections, plunger clips, probes, alligator clips, insulated wires, Kelvin clips. The catalog also discusses assembly tool kits and probe kits for oscilloscopes. Mueller Electric Co, 1583 E 31st St, Cleveland, OH 44114. Phone (216) 771-5225. FAX (216) 771-3068. Circle No. 355

Dynamic specifications for data converters. Application Note AN-3 explains the dynamic specifications of data converters. It discusses how sampling ADCs and flash ADCs allow manufacturers to guarantee dynamic performance. The note reviews relevant A/D architectures and deals with dynamic frequency-domain specifications, including S/N ratio, THD, and effective bits. The 6-pg publication also explains the significance of the input bandwidth specification. Datel Inc, 11 Cabot Blvd, Mansfield, MA 02048. Phone (508) 339-3000. FAX (508) 339-6366. Circle No. 356

Application note for subranging ADCs. Application note AN-5 covers the architecture, design, parameters, and testing of subranging ADCs. Part 1 of the app note describes the design considerations and problems of subranging ADCs. Part 2 deals with specifications, such as S/N ratio, total...
Looking for a function generator with all the bells and whistles, like direct digital synthesis, arbitrary waveforms, and modulation, that doesn't cost an arm and a leg?

Take a look at the DS345 from SRS.

At $1895, it's the only function generator you need.

It's a general purpose signal generator with standard waveforms, frequency sweeps, and synthesized accuracy. It's a 40 Msample/sec arbitrary waveform generator with 16k points of non-volatile memory. It's a complex signal source with amplitude, frequency, and phase modulation, complete with synthesized modulation waveforms. It's a remarkably agile source capable of making phase continuous frequency jumps in only 25 ns. And it's all available at the touch of a button.

What other generator has everything you want, and more? For more information about the DS345, call SRS at (408) 744-9040.

Package on superconductivity research. This package of technical literature contains several articles, such as "Automating Resistance Measurements on High Temperature Superconductors." This article speaks about appropriate resistance-measurement techniques, system configuration, system noise control, software (including a listing of a superconductor resistance test driver), and techniques for measuring resistivity. "Automating Low Resistance Measurements" identifies the differences between normal range and low-level-resistance measurement. It includes tips on automating test procedures as well as schematics and electrical connection diagrams for system set-ups and sample test-program listings. The package also features three high-temperature superconductor measurement and test systems that use the vendor's nanovoltmeters, current sources, scanners, scanner cards, and micro-ohmmeters. Keithley Instruments Inc, 28775 Aurora Rd, Cleveland, OH 44139. Phone (800) 552-5115; (216) 248-0400. FAX (216) 248-6168. Circle No. 358

Brochure of data-delivery systems. This 12-pg brochure focuses on the vendor's data-delivery systems. It explains the content and operation of Data Destination, Data Hub, and Data Origin and related subjects. Burr-Brown Corp, Box 11400, Tucson, AZ 85734. Phone (602) 746-1111. FAX (602) 741-4245. TLX 066-6491. Circle No. 359

Technical journal. News from Rohde & Schwarz, Vol 31, No. 135 highlights the PSA 17 process controller, the TS 9955 test system for surveying digital radio-telephone and data networks, the GSM radio-communications test set CRTS 04 for testing base stations, the SMGL power-signal generator, and crisis-proof communications by shortwave. Application notes deal with television technology and ARB synthesis for the AMS arbitrary-waveform generator and the ADS dual arbitrary-waveform generator. Brief items describe the URV 35 level meter for service and design engineers, the ESVD test receiver for digital mobile radio networks, and the ZPM enhanced network system. Regular features are Booktalk, R&S software, R&S test hint, R&S reference, Newsgrams, Press comments, and Information in print. The final article reports on modular avionics systems. Rohde & Schwarz, Mühldorfrstr 15, 8000 Munich, Germany. Phone (089) 4129-3208. FAX (089) 4129-3208. TLX 52370320. Circle No. 360

Data sheet for power-monitoring device. The 2-pg data sheet describes how the 8800 Powerscope power ana-
These units have gull wing construction and are packaged in shipping tubes, which is compatible with tube fed automatic placement equipment or pick and place manufacturing techniques. Transformers can be used for self-saturating or linear switching applications. The Inductors are ideal for noise, spike and power filtering applications in Power Supplies, DC-DC Converters and Switching Regulators.

- Transformers have input voltages of 5V, 12V, 24V and 48V. Output voltages to 300V.
- Transformers can be used for self-saturating or linear switching applications
- Schematics and parts list provided with transformers
- Inductors to 20mH with DC currents to 23 amps
- Inductors have split windings

Delivery—stock to one week

See EEM or send direct for FREE PICO Catalog

DC-DC Converter Transformers and Power Inductors

All PICO surface mount units utilize materials and methods to withstand extreme temperature (220°C) of vapor phase, IR, and other reflow processes without degradation of electrical or mechanical characteristics.
Not Since You Were a Kid
Have You Had So Many Choices.

Remember the candy store? Having so much to
choose from was the best part of going there.
And that's the way it is with Teledyne Components.
We have the most extensive product offering in power
drivers than any other manufacturer in CMOS technol-
y. We have more than 40 individual devices in our
product line; single, dual, quad in pull-up or pull-down
configurations. Our specs range from 1.5A to 9A; 15ns
to 25ns.

Best of all, whichever Teledyne Components power
driver you do choose, you know you are selecting high
performance, reliability and the Teledyne name.
For a free information packet describing our power
driver choices, call toll free 1-800-888-9966; in California
(415) 968-9241 or write Teledyne Components, 1300
Terra Bella Avenue, Mountain View, CA 94039. Choosing
power drivers will be like a trip to the candy store!
America rides, protects, measures, monitors, tunes, plays, communicates, computes and displays with Optrex LCDs

And that's just the beginning.

The applications for LCD's keep growing. And so does Optrex. In fact, today we're the largest supplier of LCDs in the world. Why? Innovative engineering and design support. Exceptional quality. And a nationwide distribution network. The point is, being bigger makes it easier to be more helpful to our customers — in developing new applications and in enhancing the performance of existing products. Our customers like that. You will, too. For more information, call (313) 471-6220, or fax 471-4767 today.

OPTREX
ASAHI GLASS / OPTREX
Turning New Ideas Into Reality.

23399 Commerce Drive Farmington Hills, MI 48335 Phone: (313) 471-6220 Fax: (313) 471-4767
FREE DATA ACQUISITION SOFTWARE TOOL

DAQ Designer is a free software tool that helps determine which hardware and software combinations are best for your PC-based data acquisition system. DAQ Designer will (1) ask questions about your application, (2) analyze your answers to determine your system needs, and (3) describe what hardware and software you need to develop your data acquisition system.

National Instruments
6504 Bridge Point Parkway
Austin, TX 78730
512-794-0100, FAX: 512-794-8411
800-433-3488 (U.S. and Canada)

AMD 29K, RISC DESIGN CONTEST BROCHURE

AMD and Embedded Systems Programming magazine are sponsoring a 29K RISC microprocessor design contest. Show off your hardware or software design talents and you could win a free trip for two to Hawaii! Find out why Apple, Hewlett-Packard, Tektronix and Samsung power their embedded RISC designs using the 29K Family

Call or return reply card to get your free 29K Contest brochure or other literature today.

Advanced Micro Devices, Inc.
5900 E. Ben White Blvd., MS 561
Austin, TX 78741
800-292-9263 FAX: 512-462-5051

UL, CSA, VDE COMPONENTS CATALOG

Free 130-page engineering catalog contains descriptions and technical data on IEC connectors, battery holders, RF/EMI filters and internationally approved power cords. All components are available for off-the-shelf delivery from stock, and are detailed with specifications, ratings and engineering diagrams. All Power Dynamics products carry full worldwide safety agency approvals.

Power Dynamics, Inc.
P.O. Box 539, 59 Lakeside Ave.
West Orange, NJ 07052
201-736-5722 FAX:201-736-8930

1,239,580 LC FILTERS

TTE's revised catalog, V34R, features a new section of stock filters. This standard series of filters is priced from $29.95 each, qty 1-9 stock delivery. The balance of the catalog contains information on Anti-Aliasing, Bessel, Butterworth, Chebyshev, Elliptical and custom designs all operating within the 0.1Hz to 500MHz range. General specs, attenuation curves, case drawings and mounting dimensions.

TTE, Inc.
2251 Barry Ave.
Los Angeles, CA 90064
310-478-8224 FAX:310-445-2791

ELECTRONIC DESIGN ON THE MACINTOSH

The first fully integrated CAE/CAD software that makes the Macintosh the most powerful micro-based engineering tool for electronic circuit design. McCAD design modules include: Schematic Capture • Analog/Digital Simulation • PLD Design • PCB Layout Editor • Advanced Autorouting, etc.

Vamp Inc.
6753 Selma Ave.
Los Angeles, CA 90028
213-466-5533

NEW MAGNETICS CATALOG!

Prem's new, full-line, 24-page catalog features domestic and international printed circuit power transformers, telecommunication magnetics, CRT products, and inductors for use in switch-mode power supply applications. Power transformers carry UL and CSA listings. International series includes UL, IEC, VDE, CSA and GOST approvals. Catalog includes cross reference chart to competitor's part numbers.

Prem Magnetics, Incorporated
3521 N. Chapel Hill Rd.
McHenry, IL 60050
815-385-2700 FAX:815-385-8578
CABINETS AND RACKS

General Devices' 34-page Cabinets and Racks catalog features standard, shielded and seismic Vent Rak® cabinets for commercial and military applications. Knock-down racks and cabinets are also available. Components can be easily modified with low or very high level EMI/RFI shielding, seismic structural reinforcements, special airflow provisions, and custom panel openings/widths or cabinet depths.

General Devices Company, Inc.
800-626-9484 for literature. FAX: 317-898-2917

POWER SUPPLY REFERENCE GUIDE

Power-One's new Reference Guide contains product information, corporate background and capabilities, application guide and a glossary of terms. Over 200 standards, switchmode and linear AC to DC power supplies available direct from Power-One or authorized distributors. Models are offered with outputs ranging from 2V to 250V, up to 2,000 watts. Single and multiple output models, all are design to meet UL, CSA, IEC, and VDE specs. Custom designs available.

Power-One, Inc.,
740 Calle Plano,
Camarillo, CA 93012
800-678-9445 FAX: 805-388-0476

TIME INTERVAL/FREQUENCY COUNTER

The SR620 is a high precision counter/timer with 25 ps rms single-shot time resolution and 11 digits of frequency resolution in a 1 second measurement. It measures time interval, pulse width rise/fall time, period, frequency, phase and events. In addition to presenting data on the 16 digit LED display, graphic histograms and time variation plots can be displayed on X-Y oscilloscopes. Standard interfaces include GPIB, RS-232 and Centronics printer port. U.S. List Price $4,500

Stanford Research Systems
1290 D. Reamwood Avenue
Sunnyvale, CA 94089
408-744-9040

DS345 SYNTHESIZED FUNCTION GENERATOR

The DS345 offers digitally synthesized waveforms to 30 MHz with 1 μHz resolution. Outputs can be simple sine, triangle, ramp or square waves. Complex arbitrary signals with up to 16,300 points and sampling times to 25 ns can also be generated. Internally synthesized modulation capabilities include phase continuous linear and logarithmic frequency sweeps as well as amplitude, frequency, phase and burst modulation. Optional GPIB (IEEE-488) and RS-232 interfaces are available.

Stanford Research Systems
1290 D. Reamwood Avenue
Sunnyvale, CA 94089
408-744-9040

FREE 24 PAGE ENCLOSURES CATALOG

Obtain info on Atlas/Soundolier's enclosures for housing control instrumentation, data processing, telecommunications, broadcast, process control, test and simulation systems; aerospace, security and building mgmt equipment. The 24-page catalog includes vertical, desk, and wall-mount cabinets; racks, consoles, turrets, wedges, modular/multi-bay systems, hardware, cooling, electronic and convenience accessories. Two-day shipping program.

Atlas/Soundolier, Industrial Sales Dept.
1859 Interchange Dr.
Fenton, MO 63026
800-945-1990. FREE COPY

MILITARY AND COMMERCIAL TRANSFORMERS

New 32-page catalog features audio, telecommunications, SMPS, DC-DC converter, power transformers and inductors in miniaturized, commercial, and MIL construction. Included are new Surface Mount FCC Part 68 coupling and UL, CSA, VDE, IEC certified split bobbin, flat profile, and international series of PC power and SMPS power transformers and inductors. Charts, schematics, outline drawings, and pricing are provided. Items are available off the shelf from distributors.

Microtran Co., Inc.
P.O. Box 236, Valley Stream, NY 11582
516-561-6050 FAX: 516-561-1117

TIME INTERVAL/FREQUENCY COUNTER

FRUGAL FRAME ENCLOSURE LINE

This new 20-page 4-color catalog features AMCO's Frugal Frame line of vertical consoles, reflecting a balance of quality and economy. Features include cost reduction by making cowlings an integral part of structure, new “deep texture” finish, new shadow box design effect, and acceptance of most AMCO standard accessories. Vertical panel openings are available in 21” to 78” heights, 19” wide, 25.5” and 30” depths.

AMCO Engineering Co.
3801 N. Rose, St.,
Schiller, IL 60176
312-833-3156. In IL 708-671-6670

E(E)PROM PROGRAMMERS

Reliable, fast and easy to use, Needham's Electronics E(E)PROM programmers are available in PC based or stand-alone models. Supporting 2716-4Megabit devices, Needham's programmers are capable of support for the latest in EPROM technology. Whether your needs are development or production, Needham's Electronics offers an affordable model to meet your programming requirements. All models are made in the USA by Needham's Electronics

Needham's Electronics
4539 Orange Grove Ave.
Sacramento, CA 95841
916-924-8037 FAX: 916-972-9960

E(E)PROM PROGRAMMERS

Circle # 108

Circle # 109

Circle # 110

Circle # 111

Circle # 112

Circle # 113
INDUSTRIAL PC SOLUTIONS
20-page, solution oriented reference guide detailing a complete line of PC-based industrial automation and control products: industrial PCs, 486/386/286 CPU Cards, RAM/ROM disks, rack mount keyboards and monitor enclosures. All of the latest technology at budget-conscious prices. Call for FREE reference guide:

American Advantech
1310 Tully Road, Suite 115
San Jose, CA 95122
408-293-6786

NEW IEEE-488 HARDWARE AND SOFTWARE
This catalog introduces CEC's newest and fastest IEEE-488 hardware and software. Support for Visual BASIC, Turbo Pascal for Windows, a Windows DLL, Turbo C++, BASIC 7, and Quick Pascal are shown. A code generator and instrument libraries for QuickBASIC, Turbo Pascal, Microsoft C and FORTRAN are described along with the latest IEEE-488.2 software.

Capital Equipment Corp.
Burlington, MA 01803
Literature: 800-234-4232,
Tech Support: 617-273-1818
FAX: 617-273-9057

TELECOM IC DATA BOOK
The complete reference tool for telecom design engineers. Contains 288 pages of specifications for:
- DTMF receivers and transceivers
- Call progress tone receivers and transmitters
- MF trunk receivers and transmitters
- Key system/PBX enhancements
- Test and demonstration equipment
- Product application notes for design-ins

Teltone Corporation
22121-20th Avenue SE
Bothell, WA 98021-4408
800-426-3926 FAX: 206-487-2288

LEMO'S NEW CIRCULAR CONNECTOR CATALOG
LEMO's new circular connector catalog highlights expanded shell and insert designs. Insert configurations are available in single, multi or mixed designs including signal, coaxial, triaxial, high voltage, fiber optic and fluidic/pneumatic. Shell styles are available in standard chrome plated brass, anodized aluminum or stainless steel.

Lemo USA Inc
P.O. Box 11488
Santa Rosa, CA 95406
800-444-LEMO; FAX: 707-578-0869

SMS 60W MODULAR HV POWER SUPPLY
New 60W up to 60kV in a compact, lightweight 9" x 5" x 3" module. Spellman’s SMS series high voltage power supply provides 0.01% regulation, and 0.1% peak to peak ripple. The SMS is based on a resonant flyback circuit that provides over 75% efficiency and fast dynamic response. Units are available from 1kV to 60kV. Input is 28 V dc. Applications include X-ray, electron beam systems, Capillary Electrophoresis and OEM systems.

Spellman High Voltage Electronics Corp.
7 Fairchild Ave., Plainview, NY 11803
516-349-8686 FAX: 349-8699

PROGRAMMABLE POSITION CONTROL
A complete 416 page engineer's guide with specifications, dimensions and performance data presents brushless servos, microstepping motor systems, indexers, linear motors and absolute encoders.

Hannifin Corporation,
Compumotor Division
5500 Business Park Drive
Rohnert Park, CA 94928
800-358-9070 FAX: 707-584-8015

24 PAGE RESISTORS CATALOG
Victoreen's 24 page Resistors Catalog provides complete specifications as well as application information for Victoreen's High Voltage Components:-
- MINI-MOX and MAXI-MOX, high reliability, and commercial series
- DIVIDER-MOX voltage divider networks.
- POWER-MOX high power, high voltage resistors and dividers
- SLIM-MOX non-inductive resistors and dividers
- RX-1M and RX-1 HI-MEG precision, high value, glass encapsulated
- Custom resistive networks designed for specific applications.

Victoreen's Resistors Catalog

MADE TO ORDER
The NEW Data I/O (R) direct catalog was created to make our affordable tools easy to order. You can phone, FAX, or mail in your order, and we'll deliver great values on high-quality design software, device programmers, and other products for all your programmable-device needs.

- Data I/O products at affordable prices
- 30-day, money-back guarantee of satisfaction on every product in the catalog
- Easy ordering

Call today for your FREE catalog:
1-800-3-DataI/O (1-800-332-8246)

Data I/O Corporation

American Advantech
1310 Tully Road, Suite 115
San Jose, CA 95122
408-293-6786

Circle # 114

Circle # 115

Circle # 116

Circle # 117

Circle # 118

Circle # 119

Circle # 120

Circle # 121
HIGH-SPEED PULSE GENERATORS

This new 8 page Catalog No. 8S1 describes recently introduced high-speed pulse generators and laser diode drivers which are not included in the 113 page General Cat. No. 8. Particular attention is given to general purpose laboratory pulse generators (AV-1000-C series), 40 and 100 Ampere laser diode drivers (AV-LDD series) and 800-900 Volt pulse generators (AV-SVX and AV-HVX series).

AVTECH ELECTROSYSTEMS LTD.
P.O. Box 5120 STN. F
Ottawa, Canada K2C 3H4
613-226-5772, FAX: 613-226-2802

NEW 1992 CRYSTAL OSCILLATOR CATALOG

- TTL clock osc. to 100 MHz
- CMOS clock osc. to 125 MHz
- ECL clock osc. to 700 MHz
- Sine oscillators to 2.6 GHz
- TCXOs to ±1 × 10^-15 stability
- OCXOs to ±1 × 10^-15/day
- VCXOs for phase locking and linear applications to 120 MHz
- Many new products and options

Vectron Laboratories, Inc.
166 Glover Avenue P.O. Box 5160
Norwalk, CT 06856-5160
203-853-4433 FAX: 203-849-1423

AMCO ENGINEERING

AMCO Catalog 500B features the five work day program that permits selection from three styles of consoles in 19" & 24" wide. Frames are black with your choice of one additional standard color selection for doors/panels (19 standard colors). Program includes shipping of cooling devices and accessories. Single bay consoles are shipped assembled and ready for use, multibay console orders are assembled for shipment in individual bays.

AMCO Engineering Co.
3801 N. Rose Street, Schiller Park, IL 60176
708-671-6670 FAX: 708-671-9469
or call 1-800-833-3156

CONNOR-WINFIELD OSCILLATORS

Connor-Winfield introduces its 1992 Quick Reference Guide containing information on recent additions to its leading-edge crystal oscillator line including: CMOS square-wave models to 200 MHz, ECL 14-pin DIPs to 390 MHz, low-frequency VCXOs to 200 MHz, 8-pin CMOS or ECL oscillators to 150 MHz, HCMOS tri-state SMD, 8-and 14-pin models to 70 MHz with many in-stock frequencies, and 1ppm 14-pin DIP TCXO models. Other models available from as low as 1 Hz to 650 MHz.

Connor-Winfield Corporation
1865 Selmarten Rd., Aurora, IL 60505
708-851-4722 FAX: 708-851-5040

NEW PGA COOLING INNOVATION

New two-page data sheet describes Therma1loy's new TCM* (Therma1loy Cooling Modules), a combination of patented pin fin heat sink and DC fan. TCM's cool pin grid arrays with efficiency near recirculated liquid. The five standard TCM's cool Intel 486, 860, 960, AMD AM29000, Motorola 68040, and other PGA's. TCM's may be attached with Therma1loy's PGA E-Z Mount™ assembly or epoxy bonded.

Thermalloy, Inc.,
P.O. Box 810839,
Dallas, TX 75381-0839
214-243-4321 FAX: 214-241-4656

1/AD DYNAMIC SPECS

Application Note AN-3 reviews A/D architectures before explaining frequency domain specifications. Signal-to-noise ratio, total harmonic distortion, effective bits, and input bandwidth are discussed. Calculations for maximum frequencies that can be digitized or where harmonics will alias are shown in a six-page note entitled, "DATA CONVERTERS: GETTING TO KNOW DYNAMIC SPECIFICATIONS."

Datel, Inc.
11 Cabot Blvd.
Mansfield, MA 02048
508-339-3000, FAX: 508-339-6356

SCHURTER CATALOG

Schurter, Inc. now offers an expanded technical catalog detailing fuses, fuseholders, ac connectors and plugs, NEMA 5-15R outlets, power entry modules, and voltage selectors. Included is the recently acquired line of Feller PCC components which enhances the line of ac power entry products with 1-A to 20-A IEC 320 inlets, outlets, and plugs for "cold" or "hot" connections, snap-in and chassis-mount filtered power entry modules, and the FELCOM® power entry modules for custom configurations. Medical grade fuseholders are included.

Schurter, Inc.
1016 Clegg Court
Petaluma, CA 94954
707-778-6311 FAX: 707-778-6401

DC STEPPING & AC SYNCHRONOUS MOTORS

SLO-SYN® AC Synchronous, Gearmotors and DC Stepper Motors Catalog ACDC90 has AC Synchronous section that includes 72 rpm 3-phase types, 200 rpm types, and gearmotors with torque capability to 26 lbs and ratios from 3:1 to 125:1. DC Stepper section describes motors with 1.8° full, 0.9° half and 0.0144° microstep capability. Operate to 20000 steps/sec. Holding torques to 5330 oz-in. Incorporates selection guide.

Superior Electric
383 Middle Street, Bristol, CT 06010
1-800-447-7171

EDN LITERATURE LINK

242 • EDN April 23, 1992
108 PAGE CATALOG

New 108-page catalog from PICO Electronics, Inc. is filled with electrical specifications for their line of ultra-miniature transformers, inductors and DC-DC converters. Transformers & inductors available as plug-in, surface mount or toroidal. Inductors offered with axial leads. More than 850 standard models of converters with single & dual outputs. Their small size (only 0.2" high) makes their encapsulated packaging attractive. Included are low profile AC to DC power supplies, 0.5" ht. to 200 Watts.

PICO Electronics, Inc.
453 No. MacQuesten Parkway
Mt. Vernon, NY 10552
914-699-5514 (NY) Toll Free: 800-431-1064

1992 DATA ACQUISITION CATALOG AND REFERENCE GUIDE

From Keithley MetraByte-New Free 288 page full-color Data Acquisition Catalog and Reference Guide describes their complete line of Data Acquisition Hardware, Software and Systems for 1992. The catalog introduces many new products providing higher performance, lower power consumption and lower cost. Provides facts on all plug-in boards, Data Acquisition Systems and PC instrumentation for use with IBM PC/XT/AT, PS/2 and Micro Channel computers. Also includes helpful selection charts and application notes.

Keithley MetraByte
440 Myles Standish Blvd., Taunton, MA 02780
508-880-3000

FREE! FULL LINE PRODUCT HANDBOOK

New! Power General's full line handbook, over 150 pages of electrical and mechanical specifications. Included are 20W to 150W AC/DC switchers with single and multiple output, universal input range, VDE/FCC Class B input filter, UL/CSA/VDE approvals and ultra-high MTBFs. New models feature UL544 approval for medical equipment. Also included are over 200 DC/DC models ranging from 1W to 150W, with short circuit protection, six sided shielding, and ultra-high MTBFs.

Power General
152 Will Drive
Canton, MA 02072
617-828-6216 FAX: 617-828-3215

COMPUTER BASED DMM

Brochure presents PREMA's new PC based measuring system that combines a high performance 7½ digit multimeter, 20 channel scanner and 386 based computer with instrument control software and IEEE-488 in one rack mountable cabinet. Precise measuring, storage and analysis with no programming or hardware integration. Also available is a full line catalog of PREMA DMMs, all of which are offered with a thirty day trial and two year warranty.

PREMA Precision Electronics, Inc.
4650 Arrow Highway Bldg. E-5,
Montclair, CA 91763
714-621-7292 FAX: 714-625-2098

ISOLATED SIGNAL CONDITIONING MODULES

Selection guide details Burr-Brown's broad line of rugged, low-cost, high-performance Isolated Signal Conditioning products. Wide selection of modules and accessories offers a very reliable second source for both the popular 5B Analog I/O cards, and for the industry standard Digital I/O modules. These single-channel modules can reduce electrical noise, cut wiring costs, and protect the users' equipment from high voltage transients.

Burr-Brown Corp.
Call toll free 1-800-548-6132.

FREE STD BUS OFFER

STD Bus is widely used for computer based control systems. Cubit's STD bus catalog shows our full line of boards. The simple bus structure makes it easy to design your own specialized I/O cards. To get you started, Cubit is offering a free digital or analog prototyping board along with a sample bus schematic. No strings attached! Just call Scott Francis at 415-962-8237 and tell him what your application is. For a catalog, call us or circle the number below.

Cubit Div., Proteus Industries Inc.
340 Pioneer Way, Mountain View, CA 94041
415-962-8237

PTV 200W MODULAR HV POWER SUPPLY

New 200W average, 600W peak in a compact, lightweight 10" x 10⅜" x ⅜" module. Spellman's PTV series high voltage power supply provides 0.01% regulation, and 0.03% peak to peak ripple. New quasi-resonant inverter provides 88% efficiency and fast dynamic response. Units are available from 1KV to 60KV. Auxiliary outputs may be specified. Input is 115/220VAC. Applications include projection tv, x-ray, microwave tubes, and electron beam.

Spellman High Voltage Electronics Corp.
7 Fairchild Ave., Plainview, NY 11803
516-349-8686 FAX: 516-349-8699

PROGRAMMABLE POWER SUPPLIES

Hewlett-Packard's new catalog features over 60 models of power supplies and electronic loads including 42 new models. Choose from single- and multiple-output configurations, most with built-in HP-IB(IEEE-488). HP's power products offer dependable performance for bench and system use. General reference information and selection indexes are also included.

Hewlett-Packard Co.
19310 Pruneridge Ave.
Cupertino, CA 95014
800-452-4844, Ext. 2726
RECTIFIERS, BRIDGES, DIODES, HV ASSEMBLIES

The complete and innovative line. New 8-page catalog covers EDI's extensive lines of standard rectifiers: High current bridges from 1 to 100 A, to 1400 PIV. Diodes up to 15,000 PIV. Assemblies to 300,000 PIV. Also featured are innovative designs: 10 and 40 A in-line packages, integral heat sinks, ultra-fast X-ray type diodes to 11 kV, and custom engineered rectifier designs. 40 years of specialized rectifier manufacturing experience is reflected in this new catalog. For a copy, write

Electronic Devices, Inc.
21 Gray Oaks Ave., Yonkers, NY 10710
800-678-0828, FAX: 914-965-5531

Circle # 138

NEW PC SOFTWARE EXTENDS CAPABILITIES OF FLUKE HELIOS, DATA ACQUISITION FRONT ENDS

The new Helios Logger PC-based software package from Fluke, in combination with the Helios Series of data acquisition front ends, creates a powerful yet simple-to-use system that accommodates a wide variety of inputs and applications. The Helios Logger package also provides real-time data linkage to EXCEL and Lotus 1-2-3 for Windows.

John Fluke Mfg.
Everett, WA 98206

Circle # 139

EDN MAGAZINE EDITION'S LITERATURE LINK
"The engineering professional's link to technical literature"

SPOTLIGHT YOUR LATEST CATALOG OR LITERATURE PIECE IN EDN'S LITERATURE LINK

EDN's Literature Link provides you the opportunity to target your latest catalog or brochure to the world's most qualified audience of engineering professionals. It is designed to bring engineering professionals the information they want and the sales leads you need!

MAXIMUM EXPOSURE--MINIMUM INVESTMENT

Reaching over 131,000 engineering professionals for less than 1 cent name provides the ultimate exposure for your company's literature pieces. 100% of all EDN readers are audited for specifying and buying power to insure unlimited potential for qualified sales leads from the audience who have consistently voted EDN #1 in readership since 1978.

MAILING SCHEDULE

<table>
<thead>
<tr>
<th>Issue Date</th>
<th>Closing Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>February 17, 1992</td>
<td>December 20, 1991</td>
</tr>
<tr>
<td>April 23, 1992</td>
<td>March 6, 1992</td>
</tr>
<tr>
<td>June 19, 1992</td>
<td>May 1, 1992</td>
</tr>
<tr>
<td>August 20, 1992</td>
<td>July 3, 1992</td>
</tr>
<tr>
<td>October 29, 1992</td>
<td>September 11, 1992</td>
</tr>
<tr>
<td>December 24, 1992</td>
<td>November 6, 1992</td>
</tr>
</tbody>
</table>

SEND ALL INSERTION ORDERS AND LITERATURE PIECES TO:

Heather McElkenny, EDN Literature Link Sales Manager, Cahners Publishing Company, 275 Washington Street, Newton, MA 02158-1640 Tel: 617/558-4282, Fax: 617/558-4470.

LITERATURE LINK  For More Information on Lambda Circle No. 1741
As easy as building blocks

New easy-to-assemble anechoic chambers from Tokin

- Small-sized hexahedrons
- FCC Filing and 10m regulations
- Portable chambers

The more you need anechoic chambers, the more you'll appreciate Tokin.

Why?
Because Tokin's new assembly method makes building them as easy as child's play.

Look.
With Tokin, panels (120 cm x 120 cm) come with ferrite tiles already attached. You don't have to waste time—or money—attaching 10 cm tiles, piece by piece, yourself. Then, Tokin's panels are lightweight, and put together with a hanging bar—simplicity itself.

But assembly ease is not their only strong point. Tokin's chambers are designed by computer simulation using the most reliable testing and advanced EMC technology. So whatever your needs are for diversified EMI counter measurement, Tokin skillfully meets them.

If you're in the business of measuring noise immunity and EMI, you'll find it worthwhile to look into these new Tokin chambers.

They're the basic building blocks of your new success.
Managing stress for success

The bad news is engineers are subject to pressures most people never face. The good news is you can handle those pressures productively.

Jay Fraser, Associate Editor
Stress costs American industry more than $200 billion every year in reduced productivity, absenteeism, and medical payments. Stress has been linked to strokes, heart attacks, hypertension, ulcers, diabetes, asthma, and many other diseases. Stress is the underlying cause of at least 75% of all visits to physicians. And you face stress every day of your life.

Because of the special demands of their profession, engineers have to deal with pressures that other people never experience:

- Technology changes so rapidly that engineers have to continually upgrade their knowledge and skills to remain valuable employees.
- Job security in high-tech firms is practically nonexistent. Expertise and seniority are no guarantees of employment. Engineers can lose their jobs overnight.
- Competition among high-tech companies is fierce. The pressure to develop products and get them to market as soon as possible is unrelenting.

Some firms don’t match engineers with projects very well. Too often, engineers are given jobs outside their speciality or below their skill level.

In addition, all the pressures that engineers are subject to become intensified whenever an organization downsizes.

However, the situation isn’t as dire as it may appear. Many studies have shown that the amount of stress intrinsic to a job is not as important as how an individual handles the pressure. "Some individuals thrive on life in the fast lane and doing three things at once. That would overwhelm others," says Dr Paul Rosch, professor of medicine and psychiatry at New York College of Medicine and president of the American Institute of Stress. "Conversely, the same people would be under a great deal of stress if they had a dull, dead-end assembly-line job. It really has to do with the person and the job rather than the job itself. The important thing is the person/environment fit."

Dr Hans Selye, a pioneer in the study of stress and its physiological effects, wrote the book Stress without Distress. In it he defined stress as "the nonspecific response of the body to any demand made upon it." Selye pointed out that the body reacts in much the same way to an exhilarating run down a ski slope and a nasty argument with a co-worker. Both pleasant and unpleasant experiences cause stress.

The widely used Holmes-Rahe scale enables you to determine how much stress you are under (see box, "The Holmes-Rahe scale of stress ratings"). Note that happy events, such as a marriage or the birth of a child, create a great deal of stress, and the home can produce just as much stress as the workplace.

A certain amount of stress is unavoidable in everyday life, and probably desirable. Stress sharpens the senses and spurs people on to...
greater achievement. Selye went so far as to call it "the spice of life." Stress actually makes people more efficient—up to a point. After that point, which differs for each individual, stress begins to hinder efficiency. And the more stress that is piled on, the faster efficiency drops. Selye called this excessive amount of stress "distress."

Most people mean distress when they use the word stress. To them, stress is the cause of tension, nervousness, and depression as well as the accompanying physiological consequences. Stress is inescapable, but it’s important to remember that you don’t have to be a passive victim of it. As Selye wrote “we can meet it efficiently...by learning more about its mechanism and adjusting our life accordingly.”

Studies have shown that the most stress is created on the job when a person has a large amount of responsibility but little or no control over how the work is done. In one study, two groups of workers were given the same tasks to do under the same poor conditions. They were constantly subjected to loud, distracting background noises. The only difference was that the first group was supplied with a button that would stop the noise any time someone pushed it. The second group had no button.

The first group performed far better than the second, but it’s significant that no one in the first group ever pushed the button. Just knowing they had control over their working conditions was enough to enable the first group to work more efficiently in a stressful situation.

Robert Karasek and Tores Theorell discovered a correlation between the development of stress-related illnesses and the amount of freedom people had to make decisions in their work. Even people in very challenging situations didn’t show excessive psychological strain as long as they had the latitude to make their own decisions. Karasek and Theorell published their findings in a book entitled Healthy Work. They concluded, “The primary work-related risk factor appears to be lack of control over how one meets the job demands and how one uses one’s skills.”

“The crux of the matter is trying to determine what it is in your environment that’s making you stressful, and trying to determine whether it’s something you can exert some control over or whether you have to learn to avoid or accept,” says Rosch.

**The Type A personality**

Some people are their own worst enemies when it comes to stress. They put excessive amounts of pressure on themselves. Psychologists designate these people as "Type A."

Type A people are aggressive, hostile, and driven. They overload their schedules, constantly race the clock, and distrust others. The im-

---

### The Holmes-Rahe scale of stress ratings

Add up the numerical values of any life events you have experienced within the past 24 months. If your total score is more than 300 points, you have an 80% chance of a major change in your health within the next year.

<table>
<thead>
<tr>
<th>Life event</th>
<th>Value</th>
<th>Life event</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death of spouse</td>
<td>100</td>
<td>Son or daughter leaving home</td>
<td>29</td>
</tr>
<tr>
<td>Marital separation</td>
<td>73</td>
<td>Trouble with in-laws</td>
<td>29</td>
</tr>
<tr>
<td>Jail term</td>
<td>65</td>
<td>Outstanding personal achievement</td>
<td>28</td>
</tr>
<tr>
<td>Death of a close family member</td>
<td>63</td>
<td>Spouse begins or stops work</td>
<td>26</td>
</tr>
<tr>
<td>Personal injury or illness</td>
<td>53</td>
<td>Begin or end school</td>
<td>26</td>
</tr>
<tr>
<td>Marriage</td>
<td>50</td>
<td>Change in living conditions</td>
<td>25</td>
</tr>
<tr>
<td>Fired at work</td>
<td>47</td>
<td>Revision of personal habits</td>
<td>24</td>
</tr>
<tr>
<td>Marital reconciliation</td>
<td>45</td>
<td>Trouble with boss</td>
<td>23</td>
</tr>
<tr>
<td>Retirement</td>
<td>45</td>
<td>Change in work hours or conditions</td>
<td>20</td>
</tr>
<tr>
<td>Change in health of family member</td>
<td>44</td>
<td>Change in residence</td>
<td>20</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>40</td>
<td>Change in schools</td>
<td>20</td>
</tr>
<tr>
<td>Sex difficulties</td>
<td>39</td>
<td>Change in recreation</td>
<td>19</td>
</tr>
<tr>
<td>Gain of new family member</td>
<td>39</td>
<td>Change in church activities</td>
<td>19</td>
</tr>
<tr>
<td>Business adjustment</td>
<td>39</td>
<td>Change in social activities</td>
<td>18</td>
</tr>
<tr>
<td>Change in financial state</td>
<td>38</td>
<td>Mortgage or loan less than one year’s net salary</td>
<td>17</td>
</tr>
<tr>
<td>Death of a close friend</td>
<td>37</td>
<td>Change in sleeping habits</td>
<td>16</td>
</tr>
<tr>
<td>Change to different line of work</td>
<td>36</td>
<td>Change in number of family get-togethers</td>
<td>15</td>
</tr>
<tr>
<td>Change in number of arguments with spouse</td>
<td>35</td>
<td>Change in eating habits</td>
<td>15</td>
</tr>
<tr>
<td>Mortgage over one year’s net salary</td>
<td>31</td>
<td>Vacation</td>
<td>13</td>
</tr>
<tr>
<td>Foreclosure of mortgage or loan</td>
<td>30</td>
<td>Christmas</td>
<td>12</td>
</tr>
<tr>
<td>Change in responsibilities at work</td>
<td>29</td>
<td>Minor violations of the law</td>
<td>11</td>
</tr>
</tbody>
</table>
VMIC's new family of VMEbus adapters gives you the ability to easily connect your workstation to your VMEbus. VMIC's new adapter family links Sun Sparc Stations, DEC 5000 Workstations, IBM 6000 Series Workstations, and machines based on PC-AT, ISA or EISA bus to VMEbus computers.

The product line supports master(s) and slave(s) in the VMEbus chassis and features a software-controlled dynamic address mapping mode. A software transparent mode is supported at power-up and requires no additional initialization.

VMIC also offers a Reflective Memory product line. Call VMIC toll-free and let us illustrate how easy it is to connect you.
age that comes most readily to mind of a Type A person is the hard-nosed American businessman, but this kind of behavior is found widely among people in both genders and every profession.

Dr. Meyer Friedman and Dr. Ray Rosenman, two cardiologists, first identified and named Type A people. They also found that Type A people were three times as likely to develop coronary heart disease as others. Some doctors questioned how much Type A behavior contributed to heart disease when compared with other factors such as heredity and poor health habits. So Freidman and Rosenman decided to do another study.

They put together a group of 800 Type A men who had suffered heart attacks. The men were then given counseling to change their behavior. Friedman and Rosenman followed them for three years and found that modifying Type A behavior lessened their chances of having a second heart attack by 50%. Friedman wrote, "If changing behavior can have such a striking effect on people with well-established heart disease, it should be even more helpful to those who have not yet had a heart attack."

You can change your behavior, too. Even if you're not a Type A personality, it would probably do you good to lessen the tension in your life. Here are some steps you can take to reduce the stress you face on your job:

- Re-evaluate your goals. Do you really want to be president of the company? If your goals are unrealistic, pushing yourself to achieve them is only going to cause frustration. Choose attainable goals that you can reach in a reasonable amount of time.
- Analyze your job. Once you're certain of your goals, take a close look at the work you do. Is it leading you toward your goals or toward a dead end? If you feel you need to make changes in your job, talk to your boss and see if he or she can implement them. You may even discover it's time to look for a new job.
- Reschedule your work. Make sure most of your time and energy are devoted to your most important duties. Draw up a list of your tasks at work and see if you're finishing the most important ones first. If possible, work on one task until it's completed, then move on to the next. Don't dissipate your energies, concentrate them.
- Pace yourself. Keep your deadlines in mind. Don't work frantically on one project day and night until you burn yourself out. You may be rushing unnecessarily. But don't procrastinate, either. If you hesitate to tackle a large project because it seems overwhelming, break it up into smaller, more manageable tasks. Don't try to do everything at once and don't put things off.

You're not helpless

Making beneficial changes in your work life will lessen stress but will not eliminate it entirely. If you still feel you're under an excessive amount of pressure, you're not helpless. You can use other techniques to combat the pressure.

First, learn to relax. That's not as simplistic as it sounds. Thousands of people make their living teaching others how to relax. Perhaps your company hires professionals to come in from time to time and conduct classes in relaxation techniques. Take advantage of those classes. If your company doesn't bring in professionals, the human resources department may be able to refer you to some.

The effectiveness of relaxation techniques differs widely among individuals. Some people find traditional methods such as meditation and yoga very useful. Others simply like to lose themselves in a good book.

"For some people, running or jogging is great. For others, it's boring as hell. The same thing is true for meditation," says Rosch. "The real trick is changing the way you perceive things—cognitive restructuring. For some people it's learning to be more assertive. For others it's time management. Like everything else in stress, it's not generic. Stress is a very personalized phenomenon and differs for each of us."

Applying modern technology to stress management has resulted in a technique called biofeedback. Biofeedback helps you control bodily functions, including heart rate, brain waves, and muscle tension, that were once considered completely involuntary.

In biofeedback a number of sensors are attached to your skin to measure your blood pressure, perspiration, body temperature, and other stress indicators. The sensors are connected to a machine with a display that enables you to monitor the sensors' ongoing readings. Through standard relaxation techniques, such as deep breathing, loosening muscles, and blanking out intrusive thoughts, you slowly learn how to relax and bring stress under control. Biofeedback is usually conducted in a hospital or clinic. Most people get the results they want after 10 to 15 sessions.

If you don't feel the need to seek professional help, you can do many things on your own to cope with the stress in your life.

Regular exercise can go a long way toward alleviating stress. The emphasis here is on regular. Experts recommend exercising for a minimum of one to one and a half hours three times per week. Exercise will relax your muscles and help you sleep better. Choose a
All the μC Peripherals you need.

In one chip.

PSD™3XX: A family of field-programmable peripherals with logic and memory. For embedded-control designs.

WSI’s PSD3XX single-chip μC peripherals pack all the programmable logic, SRAM, and EPROM needed for your embedded-control design. Plus advanced features like paging, cascading, address/data tracking — and more. PSD3XX devices configure in just minutes to interface with any 8- or 16-bit microcontroller. And they’re available with 256Kb, 512Kb, or 1Mb of program store to suit every embedded-control design.

In use the world over, PSD3XX μC peripherals are the ideal solution wherever higher-level integration is required: from industrial controllers to cellular phones — and thousands of other applications. **Before PSD™3XX**

For a free design kit, call today:

**After PSD™3XX**

© 1992 WSI. All rights reserved. WSI, PSD, and particular members of the PSD3XX family are trademarks of Waferscale Integration Inc.
form of exercise you enjoy so you won't think of it as a chore and intermittently force yourself to do it. Exercising at irregular intervals and overexerting yourself can actually increase stress. It also makes you prone to injuries.

Diet is also important in controlling stress. You should avoid foods with a high caffeine or salt content. Too much caffeine can make you nervous and irritable. Caffeine also causes blood vessels to constrict, which can give you a headache. Too much salt can drive up your blood pressure, which can lead to strokes, heart attacks, and kidney failure.

Foods such as candy, cake, and cookies contain processed sugars that elevate the level of your blood sugar quickly. This will temporarily make you feel that you have more energy, but your blood sugar will also plunge quickly, leaving you fatigued.

The best idea is to follow a sensible, balanced diet and eat three meals a day. Don't skip meals. That will make your energy level rise and fall erratically.

**The key to stress management**

Getting enough sleep and exercise and eating properly are ways of caring for your body, but the key to managing stress ultimately lies in your mind. Your mind needs rest and refreshment just as your body does. Don't dwell on your work 24 hours a day. Develop some outside interests. It doesn't really matter if it's chess or mountain climbing—find something to take your mind off your work.

Every once in a while, give your mind a longer break—take your vacations and holidays. Engineers are notorious for working odd hours and extra days. Try not to do it. Some companies require their employees to take their vacations within a specified time period. This has proven to be a wise policy. You can burn yourself out in a job you like as easily as in one you hate.

Talk to someone about the problems that are causing you stress. It doesn't do any good to keep your frustrations bottled up. Talk to someone in your family or to a close friend. If that's difficult for you, you may need to talk to a professional counselor.

Stress is a powerful force. If you let it rule your life, it can have a disastrous effect on your career, personal relationships, and health. However, you can bring stress under control and even harness it to work for you. How you handle stress is up to you.

---

**Nomination Deadline:**

May 22, 1992

**Innovation Award Winners: Who better qualified to cast the final vote than**

EDN's readers - engineering professionals who know that commitment to quality and creativity in electronics is the driving force of innovation.

**Winning the respect of your peers in the engineering community and being chosen "best of the best" is a special honor. Don't be left out of an opportunity to get the recognition you and your company's innovative product deserve. To compete with the industry's best, fax Pam Winch at (617) 558-4470 for a nomination packet.**
This advertising is for new and current products.

Please circle Reader Service number for additional information from manufacturers.

Instant Microcontroller

Instant C Programming

Don’t use a microprocessor, use a SmartBlock™ microcontroller module to build your custom controller. Our $195 interactive Dynamic C™ development system makes programming easy. 3.5 x 2.5 inch module includes microprocessor, memory, time/date clock, eeprom, watchdog, serial ports and more. As low as $59 in quantity. The efficiency of a custom design without the headaches.

Z-World Engineering
1724 Picasso Ave., Davis, CA 95616 USA
Tel (916) 757-3737
Regular Fax: (916) 753-5141
Automatic Fax: (916) 753-0618
Call from your fax, request data sheet #14.)

Instant C Programming

Don’t use a microprocessor, use a SmartBlock™ microcontroller module to build your custom controller. Our $195 interactive Dynamic C™ development system makes programming easy. 3.5 x 2.5 inch module includes microprocessor, memory, time/date clock, eeprom, watchdog, serial ports and more. As low as $59 in quantity. The efficiency of a custom design without the headaches.

Z-World Engineering
1724 Picasso Ave., Davis, CA 95616 USA
Tel (916) 757-3737
Regular Fax: (916) 753-5141
Automatic Fax: (916) 753-0618
Call from your fax, request data sheet #14.)
Control Cross-C

Full ANSI Cross-C Compilers & Assemblers
- HD64180, HD647180X, Z80, Z180, Z280 & NSC800.
- DOS based cross-compilers for ANSI and K&R C code.
- Completely automatic MMU support (no programming effort) for UP TO 1 MEG Z180 programs.
- Includes HD64180/7180 support library with source.
- Complete with high-speed assembler, linker, and librarian.
- Includes macro to interface C and assembly.
- All ANSI.H files and libraries provided. Source available.
- Color screens are not promoted to int. Generates inline port I/O.
- Allows in-line assembly with access to C variables.
- All code is reserved and ROMable.
- Fast ANSI/IEEE 754/INTEL floating point support.
- Supports C ISR's. Can compile to user defined segments.
- 32 functions of real-time exec. (RTX) available from C.
- RTX - up to 256 tasks, queues, and boxes w/ full interrupt support.
- ANSI C Compiler, Assembler, Linker - $699
- Assembler and Linker Only - $279
- 32 Fm. Real-Time Executive incl. Source - $399

EXTEND VGA & KEY 700 FEET!

VGA Extender™ II
- Extend VGA, Keyboard, & PS/2 Mouse up to 700 feet. Continuous Keyboard circuit prevents CPU crash when keyboard is disconnected.
- Simple extension cable compensation. Extension cable is available - $795.00, one (1) year warranty.
- Communications
- Specialties, Inc.

MIL-STD-1553

TEST EQUIPMENT
- Complete error injection/detection capability for 1553 A/B terminals and systems.
- Simulates a Bus Controller, up to 32 Remote Terminals and/or a Bus Monitor.
- Supports all phases of testing: Development, Validation and Production.
- Dynamic/Real-time simulation

2-DAY SEMINAR
- Comprehensive discussion of MIL-STD-1553 and testing.
- Lab session illustrates 1553 communication and provides experience in trouble-shooting.
- Offered in Phoenix three times a year and available on-site

VALIDATION TESTING
- Approved by the Air Force
- Testing to the RT VALIDATION TEST PLAN
- Approved test procedure and test report
- Assistance in analyzing test results and trouble-shooting

TEST SYSTEMS, Inc.
- 217 W. Palmaire • Phoenix, AZ 85021 • (602) 861-1010
- Supporting MIL-STD-1553 since 1979

CIRCLE NO. 337

High Density—Low Insertion Force
48-490 Position High Rel PC Connectors

KA/254 Printed Circuit Board Connectors are available with 4 row models with from 48 to 392 positions, and 5 row models with from 230 to 490 positions. These connectors meet D55302 performance requirements. Crimp, flow solder, Wire Wrap®, and solder cup terminations are available on 100X.100 grid spacing. Contact: HYPERTRONICS CORPORATION, 16 Brent Dr., Hudson, MA 01749. (800) 225-9228 (In Mass. & Canada (508) 568-0451) FAX: (508) 568-0680

CIRCLE NO. 333

400 MHz Logic Analyzer

- upto 128 Channels, Timing and State
- 400 MHz Max Sampling Rate
- Timing and State Simultaneous on Same Probe
- 16K Samples/Channel (high speed mode)
- 16 Levels of Sequential Triggering
- Variable, TTL, or ECL Logic Threshold Levels
- 8 External Clocks
- FREE Software Updates on 24 Hour BBS
- $799 - LA12100 (100 MHz)
- $1299 - LA32200 (200 MHz-32channels)
- $1899 - LA32400 (400 MHz-32channels)
- $1950 - LA64200 (200 MHz-64channels)
- $2750 - LA64400 (400 MHz-64channels)

CIRCLE NO. 333

UNIVERSAL PROGRAMMER

PALS
16 Bit EPROMS
FLASH EPROMs
5ns PALs
4 Meg EPROMs
FREE software updates on BBS

Call - (201) 808-8990
Link Computer Graphics, Inc.
396 Passaic Ave. # 100, Fairfield, NJ 07004 FAX 979-5786

CIRCLE NO. 339

To advertise in Product Mart, call Joanne Dorian, 212/463-6415
Free Catalog
The World’s Largest Collection of Adapters & Accessories for VLSI/Surface Mount Devices

- Emulator Pods & Adapters
- Debug Tools
- Programming Adapters
- Socket Converters

Emulation Technology, Inc.
2344 Walsh Ave. Santa Clara, CA 95051
Phone: 408-982-0660 FAX: 408-982-0664

CIRCLE NO. 343
266 - EDN April 23, 1992

SILICON VIDEO® MUX™
Flexible Frame Grabber For The PC/AT
- 8 to 8000 pixels per line
- 2 to 40 MHz sampling/display rate
- 2 to 1020 lines per field
- 1 or 4 Megabytes of Reconfigurable Image Memory
- Standard/Nonstandard Video Acquisition
- 8 Input Video Multiplexer
- CT, MR video capture
- Interface to high-resolution CCD cameras
- Extensive software

Call: (818) 991-0057 FAX: (818) 991-1281

CIRCLE NO. 349

Cross-16 Meta-Assembler: US$99 / CN$119
XDASM Cross-Disassembler: US$249/CN$299
- Both MS-DOS products include support for ALL of the above processor families.
- EPROM emulators and Forth compilers too!
- Request our catalog.
- Credit cards are billed in Canadian dollars (CN$).
- Canadian residents please add 7% G.S.T.

Cross-Universal Assemblers
P.O. Box 6158
Saint John, NB, Canada
E2L 4R6
Voice / Fax: (506) 847-0681

CIRCLE NO. 751

Silicon Video Products Division
EPIX®, Inc.
3005 MacArthur Blvd., Northbrook, IL 60062
Tel. 708-498-4002 FAX: 708-498-4321

CIRCLE NO. 350

RELIABILITY PREDICTION SOFTWARE
ARE YOUR PRODUCTS RELIABLE?
The RelCalc 2 Software Package automates the reliability prediction procedure of MIL-HDBK-217, or Bellcore, allowing quick and easy reliability analysis of electronic products on your PC. Say goodbye to tedious, time consuming, and error prone manual methods!
- NEW UPDATE VERSION 3.1 now available.
- User friendly: pop-up menus, hypertext help.
- Very easy to learn and use; quick data entry.
- Part library for rapid recall of part data.
- Global editing functions for what-if? trials.
- Reports which clearly organize results.
- Save time & money as you design for quality.
- Try our Demo Package today for $25.

T-Cubed Systems, 31220 La Baya Drive, Suite 110, Westlake Village, CA 91362
CALL: (818) 991-0057 FAX: (818) 991-1281

CIRCLE NO. 755

48 Channel 50MHz Logic Analyzer

Complete System $1895.00
New Windows 3.0 Compatible Software
- 48 Chnms at 50 MHz x 4K words deep
- 16 Trigger Words/16Level Trigger Sequence
- Storage and recall of traces/setups to disk
- Disassemblers available for: 68000, 8086, 6801, 6811, 280, 8085, 602, 6009, 6030, 6031
- Global editing functions for what-if? trials.
- Save time & money as you design for quality.

CIRCLE NO. 756

Micro-Link's VLP backplanes radically reduce system power consumption. With our VME201 MC68HC000 installed and running at 16MHz a system consumes less than 275mA at +5V; with our VME202 MC68030 at 400MHz it consumes less than 750mA.
M.V. Concepts
3005 MacArthur Blvd., Northbrook, IL 60062
Tel. 708-498-4002 FAX: 708-498-4321

CIRCLE NO. 757

Low Current VME?
If your VMEbus system needs to run on battery or solar power, or if you're concerned about system heat generation and cooling, Micro-Link has the answers.
Micro-Link's VLP backplanes radically reduce system power consumption. With our VME201 MC68HC000 installed and running at 16MHz a system consumes less than 275mA at +5V; with our VME202 MC68030 at 400MHz it consumes less than 750mA.

CIRCLE NO. 752

SCANTEAM® INSTANT INTERFACE PRODUCTS

CCD BAR CODE TECHNOLOGY
The Welch Allyn SCANTEAM® 3000 is a light-weight, rugged, easy-to-use bar code scanner which eliminates the need for an external decoder box. Utilizing solid state CCD imaging technology, this ergonomically designed long-life scanner is a cost-effective solution for POS, PC and CRT based terminals, or portable data collection applications. The SCANTEAM 3000 contains no moving parts, and the interchangeable interface cable determines output parameters. Automatic or manual triggering can be programmed based upon your application requirements.

Welch Allyn
1135 Oddstad Drive * Redwood City, CA. 94063
Tel: (415) 366-5371 * FAX: (415) 366-5375

CIRCLE NO. 753

DSP-BASED DATA ACQUISITION
& SIGNAL PROCESSING SYSTEM
- Based on Analog Devices' 2100 Family
- 3½, 12-bit ADC & 1½, 12-bit DAC
- Programmable anti-aliasing filter
- Programmable reconstruction filter
- 10 input ranges from 200V to 20 mV
- Direct serial port interface to the DSP
- Standard application library includes FFT analysis, IIR & FIR filtering, and arbitrary signal generation
- Turbo C & DOS command library available
- Ideal for DSP code development
- Graphical interface software is included

PRICE: $ 895

WAVETRON microsystems
1175 Old Milton Drive - Redwood City, CA 94065
Tel: (415) 366-5371 * FAX: (415) 366-5375

CIRCLE NO. 754

SEE US AT ELECTRO BOOTH 1106
From the company that brought you the industries first lifetime free software update policy, we bring you a truly innovative universal device programmer. See the latest from BP Microsystems as well as the entire line of affordable programmers.

BP Microsystems
The Engineer's Programmer™
1-800-225-2102

CIRCLE NO. 757

To advertise in Product Mart, call Joanne Dorian, 212/463-6415
PROTOTYPING ADAPTORS

BY THE HUNDREDS

- Quad Flat Pack, PGA, PLCC
- DIP, ZIP, LCC, and more
- Sockets or wirewrap pins
- Support all popular wire wrap panel types
- Gold pins and machined sockets for highest quality
- Quick turnaround customs

IRONWOOD ELECTRONICS
P.O. BOX 21151, ST. PAUL, MN 55121
(612) 431-7025; FAX (612) 432-6616

CIRCLE NO. 759

Tiny Industrial PC

- 40°C to +85°C
The palm-sized 5016 Micro PC™ is 100% hardware & software AT compatible, "Instant DOS" operation.
- 3512 solid-state disks on card—no floppy or hard disks required.
- Keyboard & monitor not required for operation.
- EPROM programmer
- 4 MB DRAM
- COM1 serial port
- Keyboard/speaker port
- SV only operation
- Autorun capability
- 16 MHz operation
- DOS 3.31 in ROM
- Passive backplane operation
- Full line catalog
- 3 year warranty

Tel: 303-430-1500, Fax: 303-426-8126

CIRCLE NO. 760

RELAY SENSOR I/O

- 16 CHANNEL OPTO-ISOLATED INPUT
- 16 CHANNEL REED RELAY OUTPUT
- 16 IN / 16 OUT COMBO
- 8 IN / 8 OUT COMBO
- SOFTWARE INCLUDED
- MADE IN USA
- EXCELLENT TECHNICAL SUPPORT

SEALEVEL SYSTEMS INC.
P.O. BOX 830
LIBERTY, SC 29657
(803) 843-4343

CIRCLE NO. 761

CMOS EEPROMs

For quality conscious and price sensitive engineer...

MEPCOPAL'S GENERAL PURPOSE TRIMMERS

Evaluate our performance proven models

CT6 ½" singleturn
CT10 ¼" multturn
CT9 ¾" multturn 8026 ¾" multturn

Available from stock

Additonal through-hole styles, surface mount, military and open frame products are available in a wide range of resistance values.

Call 800-548-1763 ext. 280 for samples and specifications.

CIRCLE NO. 765

To advertise in Product Mart, call Joanne Dorian, 212/463-6415
Save $1000 on our entry-level logic system.

**ABEL-PLD:**

Logic design for less.

- 150 PLD architectures supported (more than 4000 devices)
- Uses ABEL™ Hardware Description Language (ABEL-HDL™)
- Intelligent synthesis and optimization
- Upgradable to full-featured ABEL Design Software
- Includes the 212 Multi Programmer with logic module, ABEL-PLD™ and PROMLink™ Ltd. PIC Interface Software
- Supports 20- and 24-pin CMOS devices

Call Data I/O® Direct today to order ABEL-PLD:

1-800-3-DataI0 (1-800-332-8246)

"U.S. list price only.

---

DC/CAD introducing...

**THE TERMINATOR**

Super High Density Router

(Complete with Schematic & PCB EDITOR)

Features the following powerful algorithm & capability:

- Rip-up and Retry
- Pre-routing of SMT components
- Real-Time via minimization
- Real-Time clean up passes
- User defined strategies
- Window 3.0 capability as DOS Task
- 1-ml Autoplace and Autoplanning
- Two-way Gerber and DXF
- Automatic Ground Plane w/ Cross Hatching
- Complete w/ Schematic & Legend Libraries
- Optional simulation capability & protected mode for 386 users

**FREE DEMO DISKS**

See why over 20,000 engineers rely on SCHEMA for their design needs.

- Schematic Capture
- PCB layout & routing
- Simulation
- PLD design

Call 800-553-9119

---

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

EDN April 23, 1992
Program your hot new parts here.

And Now. Just one thing stands between you and your “hot” new design: a device programmer that can handle it. That’s why the UniSite™ Universal Programmer is the designer’s first choice.

UniSite is always first to support the latest devices like the Altera Max, AMD MACH™, and the newest FPGAs. It also supports more packages—including PLCCs and LCCs up to 84 pins, pin grid arrays, and SOICs. UniSite is designed for the future. Data I/O’s® universal pin driver technology eliminates pinout adapters, for single-site programming of each device type. And its new PinSite™ programming module uses Data I/O’s new Universal Package System™ to support all surface-mount packages from one site. Adding device support is easy too, with UniSite’s update diskettes. They’re released quarterly, so you’ll always have support for the latest devices—first.

Call your local Data I/O representative listed below to find out more about UniSite.

Austria
0222 827474
Belgium
02 252 3690
Denmark
042 459320
Finland
90 8056211
France
013 0568131
Germany
089 858580
Greece
172 49511
Ireland
031 953000

Italy
02 618 1893
Netherlands
040 582911
Norway
02 901180
Portugal
01 410 3420
Spain
01 2425204
Sweden
08 380370
Switzerland
01 723 1110
United Kingdom
0734 440011

Data I/O Corporation 10525 Willows Road N.E., P.O. Box 97046, Redmond, WA 98073-9746, U.S.A. (206) 881-6444
Data I/O Canada 6725 Airport Road, Suite 302, Mississauga, Ontario L4Y 1V2 (416) 678-2781
Data I/O Europe 660 Esselte Road, Suite D, Winnersh, Wokingham, Berkshire, United Kingdom RG11 5TS, 0734 440011
Data I/O GmbH Loehniger-Schlegel 5A, 8032 Greifwhing, Germany, + 49 (0)89-858580
Data I/O Japan 21-40-1, 3-3432-8981
Data I/O Limited 660 Esselte Road, Winnersh, Wokingham, Berkshire, United Kingdom RG11 5TS, 0734 440011

CIRCLE NO. 188
Create the Industry's Most Advanced Digital Loop Carrier Systems!!

Pulse Communications, with 28 years' experience in the Telecommunications market, has just completed another successful record-setting year. Pulsecom is increasing its design and development staff by 50% in 1992. The increased staff will be developing next generation TR-303 compliant digital loop carrier and SONET transport systems. Join an industry leader during our vigorous growth phase.

Qualified applicants will have a BSEE, BSME, or BSCS and a minimum of two years experience in a telecommunications environment. An advanced degree, knowledge of Bellcore standards, and demonstrated capabilities in the design of advanced voice and data transmission products are definite pluses. Specific opportunities are available for:

SOFTWARE ENGINEERS
- Embedded real-time systems
- C programming on a UNIX platform
- Intel 8051 and Motorola 68XXX processors

EQUIPMENT ENGINEERS
- Mechanical Design on AutoCad
- Outdoor equipment cabinets
- Electronic equipment packaging and thermal analysis
- Power system design

ASIC DESIGNERS
- VHDL design
- Valid running on Sun Workstations
- SONET, ADM, TSI

LINE CARD DESIGNERS
- Analog and digital
- Voice and data transmission
- Microprocessor control
- EPLD, ASIC, FPGA
- ISDN, T1

COMMON CONTROL DESIGNERS
- Motorola 68XXX microprocessors
- ASIC or FPGA
- Remote test
- High speed backplanes
- X.25, LAN

Pulsecom offers excellent and competitive salaries and a liberal fringe benefits package.

Pulsecom is a subsidiary of Hubbell, Inc. and is located on the western edge of Fairfax County, Virginia, adjacent to Dulles International Airport, and 30 minutes from downtown Washington, D.C.

If you have the background we seek, send your resume and salary history to: Pulsecom, Human Resources, 2900 Towerview Road, Herndon, Virginia 22071 or call (703) 471-2900 or (800) 821-7924. An Equal Opportunity Employer M/F/H/V.
DISK COMPACT DIGITAL DESIGNER

Symbol Technologies, Inc. is a world leader in the design and manufacture of portable information collection and data capture systems. Our continued growth and expansion has moved us into the data communications arena and created an opportunity for a Senior Digital ASIC and board-level Design Engineer to participate in the architecture of our next generation of products.

A BSEE/MSEE coupled with a minimum of 10 years experience (some in a commercial product environment) and digital logic design experience with product involvement from concept through production is essential. A working knowledge in analog and power supply design is desirable.


Software Engineering

Put your design talent to work managing a team of professionals, including electrical, mechanical and software design. As a project leader, you will manage the product from conception to market by conducting feasibility studies, planning and designing circuitry/hardware developing and testing prototypes, and coordinating the transfer of new products to Manufacturing.

Sencore is recognized as a leader in the electronic test equipment industry. Our Sioux Falls based firm is looking for a project leader that possesses the following:

- Three years experience with general product application.
- Knowledge of CAD/CAM, Mechanical, Software, and Hardware design.
- BSEE with an ME minor preferred.
- Successful background in the total design of electronic products using Project Management.
- Excellent communication skills.
- Ability to work with/through others.

Send cover letter resume to: Sencore, Inc., Human Resource Dept. (PTL/EDN), 3200 Sencore Drive, Sioux Falls, SD 57107. EOE

SYSTEM TEST DEVELOPMENT ENGINEER

Acting as a key participant in the development of cost effective test strategies for a volume product, you will develop procedures, hardware and software to test a fiber optic based CATV system. You will also have responsibility for the design of custom ATE equipment from prototype to a full manufacturing environment. Interface with design engineering and interpretation of design specifications will also be involved. A BSEE/MSEE or equivalent with a minimum of 5 years' experience in RF test development in the frequency range of 40 MHz to 1 GHz is necessary. Familiarity with IEEE 488 instrument controllers is a plus. Job Code: STD

SYSTEM TEST ENGINEER

You will have ample opportunity to utilize your 5+ years' experience as a Software System Test Engineer. Also helpful are 3-5 years' experience as a Software Engineer developing telecommunications or related software for high-availability, real-time or embedded systems. A BS in a technical science (MS preferred) or equivalent is necessary, as is experience with a telecommunications product, especially SLC-96. Working knowledge of Bellcore standards TR-57 and TR-303 and familiarity with logic analyzers, central office simulators and bulk call generators are desirable. Familiarity with IEEE and/or Bellcore standards for software quality assurance and testing is preferred. Job Code: STE

SOFTWARE PROCESS ENGINEER

You will design, develop and implement software engineering processes in conformance with customer, regulatory, internal and engineering standards/specifications. Additionally, you will develop and initiate metrics analysis for software improvement while providing guidance/training to quality and engineering personnel. A BS in CS, related field or equivalent and 5-8 years' engineering experience is necessary. An MS and 3-6 years' experience are also acceptable. You need knowledge of software metrics/reliability and Total Quality Management principles. Strong written, presentation, communication and analytical skills are essential, as is the ability to work independently. A basic understanding of domestic and international telephony specifications is preferred. Job Code: SPE

SR. OPTICAL/ELECTRICAL ENGINEER

You will develop and evaluate externally modulated transmitters for video applications. To qualify for this high profile position, you need a PhD in Physics, Optics, EE or equivalent and 5 years' experience. Also essential are RF electronics skills; general laboratory skills; and experience with solid state lasers and lithium niobate technology. A CATV background would be helpful. Job Code: SEE

Additional opportunities are available for technical professionals in the Engineering, Manufacturing and Marketing areas.

As a Raychem company, we have the resources to offer an excellent compensation and benefits package. Please forward your resume, indicating job code/position title, to Raynet Corporation, Human Resources, Dept. EDN/MM-7, 181 Constitution Drive, Menlo Park, CA 94025-1164. PRINCIPALS ONLY. NO PHONE CALLS, PLEASE. EOE

Raynet

Join a company where the future is unfolding today. Raynet's revolutionary fiber optic communication systems are geared for local loop applications throughout the world. We're challenging convention and introducing a new era of telecommunications technology. To achieve our far-reaching potential, we need more high caliber individuals ready to fuel our innovations. If you are an experienced professional, take a look at what we have to offer. And discover how at Raynet, we're changing the way the world communicates.

SYSTEM TEST DEVELOPMENT ENGINEER

Acting as a key participant in the development of cost effective test strategies for a volume product, you will develop procedures, hardware and software to test a fiber optic based CATV system. You will also have responsibility for the design of custom ATE equipment from prototype to a full manufacturing environment. Interface with design engineering and interpretation of design specifications will also be involved. A BSEE/MSEE or equivalent with a minimum of 5 years' experience in RF test development in the frequency range of 40 MHz to 1 GHz is necessary. Familiarity with IEEE 488 instrument controllers is a plus. Job Code: STD

SYSTEM TEST ENGINEER

You will have ample opportunity to utilize your 5+ years' experience as a Software System Test Engineer. Also helpful are 3-5 years' experience as a Software Engineer developing telecommunications or related software for high-availability, real-time or embedded systems. A BS in a technical science (MS preferred) or equivalent is necessary, as is experience with a telecommunications product, especially SLC-96. Working knowledge of Bellcore standards TR-57 and TR-303 and familiarity with logic analyzers, central office simulators and bulk call generators are desirable. Familiarity with IEEE and/or Bellcore standards for software quality assurance and testing is preferred. Job Code: STE

SOFTWARE PROCESS ENGINEER

You will design, develop and implement software engineering processes in conformance with customer, regulatory, internal and engineering standards/specifications. Additionally, you will develop and initiate metrics analysis for software improvement while providing guidance/training to quality and engineering personnel. A BS in CS, related field or equivalent and 5-8 years' engineering experience is necessary. An MS and 3-6 years' experience are also acceptable. You need knowledge of software metrics/reliability and Total Quality Management principles. Strong written, presentation, communication and analytical skills are essential, as is the ability to work independently. A basic understanding of domestic and international telephony specifications is preferred. Job Code: SPE

SR. OPTICAL/ELECTRICAL ENGINEER

You will develop and evaluate externally modulated transmitters for video applications. To qualify for this high profile position, you need a PhD in Physics, Optics, EE or equivalent and 5 years' experience. Also essential are RF electronics skills; general laboratory skills; and experience with solid state lasers and lithium niobate technology. A CATV background would be helpful. Job Code: SEE

Additional opportunities are available for technical professionals in the Engineering, Manufacturing and Marketing areas.

As a Raychem company, we have the resources to offer an excellent compensation and benefits package. Please forward your resume, indicating job code/position title, to Raynet Corporation, Human Resources, Dept. EDN/MM-7, 181 Constitution Drive, Menlo Park, CA 94025-1164. PRINCIPALS ONLY. NO PHONE CALLS, PLEASE. EOE

Raynet

Join a company where the future is unfolding today. Raynet's revolutionary fiber optic communication systems are geared for local loop applications throughout the world. We're challenging convention and introducing a new era of telecommunications technology. To achieve our far-reaching potential, we need more high caliber individuals ready to fuel our innovations. If you are an experienced professional, take a look at what we have to offer. And discover how at Raynet, we're changing the way the world communicates.

SYSTEM TEST DEVELOPMENT ENGINEER

Acting as a key participant in the development of cost effective test strategies for a volume product, you will develop procedures, hardware and software to test a fiber optic based CATV system. You will also have responsibility for the design of custom ATE equipment from prototype to a full manufacturing environment. Interface with design engineering and interpretation of design specifications will also be involved. A BSEE/MSEE or equivalent with a minimum of 5 years' experience in RF test development in the frequency range of 40 MHz to 1 GHz is necessary. Familiarity with IEEE 488 instrument controllers is a plus. Job Code: STD

SYSTEM TEST ENGINEER

You will have ample opportunity to utilize your 5+ years' experience as a Software System Test Engineer. Also helpful are 3-5 years' experience as a Software Engineer developing telecommunications or related software for high-availability, real-time or embedded systems. A BS in a technical science (MS preferred) or equivalent is necessary, as is experience with a telecommunications product, especially SLC-96. Working knowledge of Bellcore standards TR-57 and TR-303 and familiarity with logic analyzers, central office simulators and bulk call generators are desirable. Familiarity with IEEE and/or Bellcore standards for software quality assurance and testing is preferred. Job Code: STE

SOFTWARE PROCESS ENGINEER

You will design, develop and implement software engineering processes in conformance with customer, regulatory, internal and engineering standards/specifications. Additionally, you will develop and initiate metrics analysis for software improvement while providing guidance/training to quality and engineering personnel. A BS in CS, related field or equivalent and 5-8 years' engineering experience is necessary. An MS and 3-6 years' experience are also acceptable. You need knowledge of software metrics/reliability and Total Quality Management principles. Strong written, presentation, communication and analytical skills are essential, as is the ability to work independently. A basic understanding of domestic and international telephony specifications is preferred. Job Code: SPE

SR. OPTICAL/ELECTRICAL ENGINEER

You will develop and evaluate externally modulated transmitters for video applications. To qualify for this high profile position, you need a PhD in Physics, Optics, EE or equivalent and 5 years' experience. Also essential are RF electronics skills; general laboratory skills; and experience with solid state lasers and lithium niobate technology. A CATV background would be helpful. Job Code: SEE

Additional opportunities are available for technical professionals in the Engineering, Manufacturing and Marketing areas.

As a Raychem company, we have the resources to offer an excellent compensation and benefits package. Please forward your resume, indicating job code/position title, to Raynet Corporation, Human Resources, Dept. EDN/MM-7, 181 Constitution Drive, Menlo Park, CA 94025-1164. PRINCIPALS ONLY. NO PHONE CALLS, PLEASE. EOE
Electrical Engineer: Will design and develop Real-Time Control and Test Software in IBM PCs, programmable controllers and microcomputers by using C, Pascal, Fortran, Basic and Assembly languages. Will design and test analog and digital circuits to be used in industrial process control systems. Will design and apply advanced microcomputers in industrial process control systems. Will perform electrical drawing and PC board drawing by using graphic packages. Requires M.S. or completion of coursework for the M.S. degree in Electrical Engineering. Education to include completion of course work in the following: Design of Control Systems; Advanced Microcomputers; and, Network Synthesis. Education to include completion of six months research in Real-Time Failure Diagnosis for Systems Process Controls. Hours: 40 hours per week at $15.00 per hour salary and three hours of overtime at $22.50 per hour salary. Please send resume with social security number to: Indiana Department of Employment & Training Services, 10 N. Senate Ave., Indianapolis, Indiana 46204, ATTN: W.F. Shepherd, #3288233, An Employer Paid Ad.

Get a Job!

Lear Astronics Corp. is a leading supplier of Avionics, Radar and Advanced Electronic Systems.

If your experience is flight control computers, avionic systems, or actuators, we would like to hear from you.

Flight Control Systems Engineers

Responsible for definition of fly-by-wire flight control systems. Must be familiar with redundant systems, H/W/SW system level design, aircraft interfaces/busses and V&W. BSEE and 5 years experience required.

Aircraft Actuator Engineers

Requires a BSME/AE and 5 years experience in the design of electromechanical actuators for automatic flight control systems.

ATE Specialist

Design systems for PC-based ATE to support development and test of analog/digital LRU's. Requires a BSEE and 8+ years electronic design experience in factory automatic test systems. A background in LRU BIT design is essential.

WE WILL BE COMING TO YOUR AREA SOON.
FOR A LOCAL INTERVIEW APPOINTMENT, CALL CHUCK DOYLE AT:
1-800-LEAR-JOB

Lear Astronics Corp., Dept. L87, 3400 Airport Ave., Santa Monica, CA 90406. (310) 915-6745, FAX (310) 915-8387. EOE. Employment offers are contingent on satisfactory pre-employment drug tests. You will be contacted only if we are considering you for the position advertised.

If you’re looking for work, just look here.
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbott Electronics</td>
<td>83</td>
</tr>
<tr>
<td>ACCEL Technologies Inc.</td>
<td>152</td>
</tr>
<tr>
<td>Acces</td>
<td>231</td>
</tr>
<tr>
<td>Actel</td>
<td>116-117</td>
</tr>
<tr>
<td>Acugen Software Inc.</td>
<td>156</td>
</tr>
<tr>
<td>Advanced Micro Devices</td>
<td>12-13, 28-29</td>
</tr>
<tr>
<td>Advin Systems</td>
<td>265</td>
</tr>
<tr>
<td>AIT</td>
<td>33</td>
</tr>
<tr>
<td>Altera Corp.</td>
<td>33</td>
</tr>
<tr>
<td>Amco Engineering</td>
<td>240, 242</td>
</tr>
<tr>
<td>American Advantech</td>
<td>241</td>
</tr>
<tr>
<td>American Neurologic</td>
<td>265</td>
</tr>
<tr>
<td>American Research and Engineering</td>
<td>203</td>
</tr>
<tr>
<td>American AMP</td>
<td>118-119</td>
</tr>
<tr>
<td>Analog Devices Inc.</td>
<td>74-75, 222-223</td>
</tr>
<tr>
<td>Antex Microtechnology Corp.</td>
<td>11</td>
</tr>
<tr>
<td>Array Microsystems</td>
<td>165</td>
</tr>
<tr>
<td>Asahi Optex</td>
<td>238</td>
</tr>
<tr>
<td>Asahi Kasei Microsystems</td>
<td>175</td>
</tr>
<tr>
<td>AT&amp;T</td>
<td>214-217</td>
</tr>
<tr>
<td>Atlas/Soundolier, Industrial Sales Dept</td>
<td>240</td>
</tr>
<tr>
<td>Atmel Inc.</td>
<td>129</td>
</tr>
<tr>
<td>The Athena Group Inc.</td>
<td>265</td>
</tr>
<tr>
<td>Autec Power Systems</td>
<td>219</td>
</tr>
<tr>
<td>Avai Corp of Ireland</td>
<td>265</td>
</tr>
<tr>
<td>Avnet Microsystems</td>
<td>242</td>
</tr>
<tr>
<td>Ballard Technology</td>
<td>268</td>
</tr>
<tr>
<td>Belden Wire &amp; Cable</td>
<td>194</td>
</tr>
<tr>
<td>BP Microsystems</td>
<td>266</td>
</tr>
<tr>
<td>Burr-Brown Corp.</td>
<td>243</td>
</tr>
<tr>
<td>Cahners CAPS</td>
<td>115</td>
</tr>
<tr>
<td>Capital Equipment Corp.</td>
<td>146-147</td>
</tr>
<tr>
<td>Catalyst Semiconductor Inc.</td>
<td>268</td>
</tr>
<tr>
<td>Ceibo Ltd</td>
<td>187</td>
</tr>
<tr>
<td>Cincon Connector Div</td>
<td>145</td>
</tr>
<tr>
<td>Communications Specialties Inc.</td>
<td>264</td>
</tr>
<tr>
<td>Concurrent Logic</td>
<td>131</td>
</tr>
<tr>
<td>Connor-Winfield Corp.</td>
<td>242</td>
</tr>
<tr>
<td>Cubic/Protex Industries Inc.</td>
<td>265</td>
</tr>
<tr>
<td>Cryo-Gen Semiconductor</td>
<td>21</td>
</tr>
<tr>
<td>Dale Electronics Inc</td>
<td>1</td>
</tr>
<tr>
<td>Data I/O Corp*</td>
<td>80, 241-242, 268-269</td>
</tr>
<tr>
<td>Datel</td>
<td>189-192</td>
</tr>
<tr>
<td>Design Computation Inc</td>
<td>268</td>
</tr>
<tr>
<td>DigKey</td>
<td>2</td>
</tr>
<tr>
<td>Duracell</td>
<td>62</td>
</tr>
<tr>
<td>Echelon</td>
<td>150-151</td>
</tr>
<tr>
<td>Elchelon</td>
<td>191</td>
</tr>
<tr>
<td>Elantec</td>
<td>201</td>
</tr>
<tr>
<td>Electronic Devices</td>
<td>244</td>
</tr>
<tr>
<td>Electronic Measurements Inc.</td>
<td>225</td>
</tr>
<tr>
<td>Emulation Technology Corporation</td>
<td>265</td>
</tr>
<tr>
<td>Emulex Corp.</td>
<td>86-87</td>
</tr>
<tr>
<td>EPI Inc.</td>
<td>266</td>
</tr>
<tr>
<td>Epson America Inc</td>
<td>169</td>
</tr>
<tr>
<td>Euro ASIC*</td>
<td>149</td>
</tr>
<tr>
<td>Force Computers Inc</td>
<td>70-72</td>
</tr>
<tr>
<td>Fuji Electrochemical Co</td>
<td>70</td>
</tr>
<tr>
<td>Fujitsu Microelectronics Inc.</td>
<td>109</td>
</tr>
<tr>
<td>GE Plastics</td>
<td>32-33</td>
</tr>
<tr>
<td>General Semiconductor</td>
<td>240</td>
</tr>
<tr>
<td>Hannfin Corp, Computor Div</td>
<td>241</td>
</tr>
<tr>
<td>Harris Semiconductor</td>
<td>92-93</td>
</tr>
<tr>
<td>Hewlitt-Packard Co</td>
<td>18, 98, 243</td>
</tr>
<tr>
<td>Hypertronics Corp</td>
<td>264</td>
</tr>
<tr>
<td>IBI Systems Inc</td>
<td>267</td>
</tr>
<tr>
<td>IDT</td>
<td>193</td>
</tr>
<tr>
<td>IEE</td>
<td>150-151</td>
</tr>
<tr>
<td>ILC Data Device Corp</td>
<td>49</td>
</tr>
<tr>
<td>Illinois Capacitor</td>
<td>195</td>
</tr>
<tr>
<td>Incredible Tech</td>
<td>263</td>
</tr>
<tr>
<td>Intel</td>
<td>232A-232F</td>
</tr>
<tr>
<td>Intergraph Corp</td>
<td>177</td>
</tr>
<tr>
<td>Intermetrics Inc</td>
<td>203</td>
</tr>
<tr>
<td>International General</td>
<td>85</td>
</tr>
<tr>
<td>IntuSoft</td>
<td>264</td>
</tr>
<tr>
<td>Ironwood Electronics Inc</td>
<td>267</td>
</tr>
<tr>
<td>ITT Pomona Electronics</td>
<td>106</td>
</tr>
<tr>
<td>John Fluke Manufacturing Co Inc</td>
<td>34-35, 104, 147-197, 244</td>
</tr>
<tr>
<td>Keithley Metabyte</td>
<td>243</td>
</tr>
<tr>
<td>Kapco Inc.</td>
<td>228-229</td>
</tr>
<tr>
<td>Lambda Electronics Inc</td>
<td>245-254</td>
</tr>
<tr>
<td>Lattice Semiconductor Corp</td>
<td>133</td>
</tr>
<tr>
<td>Lemo USA Inc.</td>
<td>241</td>
</tr>
<tr>
<td>Linear Technology Corp</td>
<td>170</td>
</tr>
<tr>
<td>Link Computer Graphics Inc</td>
<td>264</td>
</tr>
<tr>
<td>Maxim Integrated Products</td>
<td>179, 181</td>
</tr>
<tr>
<td>Mepccopal Co</td>
<td>267</td>
</tr>
<tr>
<td>Meritec</td>
<td>111</td>
</tr>
<tr>
<td>MetaLink Corp</td>
<td>267</td>
</tr>
<tr>
<td>Microelectronics</td>
<td>200</td>
</tr>
<tr>
<td>Micro Link</td>
<td>267</td>
</tr>
<tr>
<td>Microstar Laboratories</td>
<td>265</td>
</tr>
<tr>
<td>Microtron Inc.</td>
<td>135</td>
</tr>
<tr>
<td>Microvision Inc.</td>
<td>50-55</td>
</tr>
<tr>
<td>Mini-Circuits Laboratories</td>
<td>3, 4</td>
</tr>
<tr>
<td>Mizar Inc.</td>
<td>203</td>
</tr>
<tr>
<td>Molex Inc.</td>
<td>194</td>
</tr>
<tr>
<td>Motorola</td>
<td>14-15, 25</td>
</tr>
<tr>
<td>Murrinett Circuits</td>
<td>190</td>
</tr>
<tr>
<td>National Instruments</td>
<td>22, 239</td>
</tr>
<tr>
<td>National Semiconductor Corp</td>
<td>94-96</td>
</tr>
<tr>
<td>National Semiconductor Corp</td>
<td>112-114, 278A-R</td>
</tr>
<tr>
<td>NEC Electronics Inc</td>
<td>276</td>
</tr>
<tr>
<td>Neecham Electronics Inc</td>
<td>240</td>
</tr>
<tr>
<td>Nepon East 92</td>
<td>240</td>
</tr>
<tr>
<td>Nonau Corp.</td>
<td>265</td>
</tr>
<tr>
<td>Noise Laboratory Co</td>
<td>265</td>
</tr>
<tr>
<td>Northake Co Inc</td>
<td>209</td>
</tr>
<tr>
<td>Novotechnik US Inc</td>
<td>50</td>
</tr>
<tr>
<td>Oak Grigsby</td>
<td>218</td>
</tr>
<tr>
<td>Octagon Systems</td>
<td>267</td>
</tr>
<tr>
<td>Ohmite Mfg Co</td>
<td>235-236</td>
</tr>
<tr>
<td>OKI Semiconductor</td>
<td>204</td>
</tr>
<tr>
<td>Omron Inc.</td>
<td>240</td>
</tr>
<tr>
<td>Omron Electronics Inc</td>
<td>90-91</td>
</tr>
<tr>
<td>OraCAD Systems Corp</td>
<td>30</td>
</tr>
<tr>
<td>Orion Institute</td>
<td>268</td>
</tr>
<tr>
<td>Pacific Data</td>
<td>133</td>
</tr>
<tr>
<td>PADS Software Inc</td>
<td>265</td>
</tr>
<tr>
<td>Palomar Telecom Inc</td>
<td>266</td>
</tr>
<tr>
<td>Performance Semiconductor Corp</td>
<td>67-129</td>
</tr>
<tr>
<td>Philips Semiconductor*</td>
<td>34-35</td>
</tr>
<tr>
<td>Philips T&amp;M*</td>
<td>204</td>
</tr>
<tr>
<td>Pico</td>
<td>236, 243</td>
</tr>
<tr>
<td>Prijenburg*</td>
<td>70</td>
</tr>
<tr>
<td>Power Dynamics</td>
<td>238</td>
</tr>
<tr>
<td>Powerex Inc.</td>
<td>203</td>
</tr>
<tr>
<td>Power General</td>
<td>243</td>
</tr>
<tr>
<td>Power-One Inc.</td>
<td>240</td>
</tr>
<tr>
<td>Power Trends Inc</td>
<td>65</td>
</tr>
<tr>
<td>Precision Interconnect</td>
<td>44</td>
</tr>
<tr>
<td>Prem Magnetics Inc</td>
<td>239</td>
</tr>
<tr>
<td>Prem Precision Eletronics Inc</td>
<td>243</td>
</tr>
<tr>
<td>Qua Tech Inc.</td>
<td>190</td>
</tr>
<tr>
<td>Raltron</td>
<td>192</td>
</tr>
<tr>
<td>RLC Enterprises</td>
<td>40</td>
</tr>
<tr>
<td>Rogers Corp.</td>
<td>267</td>
</tr>
<tr>
<td>Samsung Semiconductor</td>
<td>16-17</td>
</tr>
<tr>
<td>Samtec Inc.</td>
<td>210-211</td>
</tr>
<tr>
<td>Schurter Inc.</td>
<td>242</td>
</tr>
<tr>
<td>Sealevel Systems</td>
<td>267</td>
</tr>
<tr>
<td>Selco Products Inc</td>
<td>146</td>
</tr>
<tr>
<td>Siemens Convergence Inc</td>
<td>42</td>
</tr>
<tr>
<td>Sierra Circuits</td>
<td>263</td>
</tr>
<tr>
<td>Signum Systems</td>
<td>146</td>
</tr>
<tr>
<td>Siliconix Inc.</td>
<td>212</td>
</tr>
<tr>
<td>Simtek</td>
<td>206</td>
</tr>
<tr>
<td>Softools</td>
<td>264</td>
</tr>
<tr>
<td>Spectrum Software</td>
<td>220</td>
</tr>
<tr>
<td>Spallman High Voltage Corporation</td>
<td>241, 243</td>
</tr>
<tr>
<td>Standard Microsystems</td>
<td>71</td>
</tr>
<tr>
<td>Stanford Research Systems Inc</td>
<td>234, 240</td>
</tr>
<tr>
<td>Star Semiconductor Corp</td>
<td>47</td>
</tr>
<tr>
<td>Superior Electric Co</td>
<td>242</td>
</tr>
<tr>
<td>Synergy Microsystems</td>
<td>230</td>
</tr>
<tr>
<td>Tabor Electronics</td>
<td>268</td>
</tr>
<tr>
<td>T-Cubed Systems Inc</td>
<td>266</td>
</tr>
<tr>
<td>Tektronix</td>
<td>51-60, 76-78, 196-198</td>
</tr>
<tr>
<td>Teledyne Components</td>
<td>237</td>
</tr>
<tr>
<td>Teledyne Solid State</td>
<td>8</td>
</tr>
<tr>
<td>Teltone Corp.</td>
<td>241, 265</td>
</tr>
<tr>
<td>Test Systems</td>
<td>264</td>
</tr>
<tr>
<td>Texas Instruments Inc*</td>
<td>42, 65</td>
</tr>
<tr>
<td>Thermolyte Inc.</td>
<td>242</td>
</tr>
<tr>
<td>3M Electrical Specialties Div</td>
<td>224</td>
</tr>
<tr>
<td>Tokin Corp.</td>
<td>257</td>
</tr>
<tr>
<td>Toko America Inc</td>
<td>134</td>
</tr>
<tr>
<td>Toyocom</td>
<td>207</td>
</tr>
<tr>
<td>Transera</td>
<td>32</td>
</tr>
<tr>
<td>Tribal Microsystems</td>
<td>263</td>
</tr>
<tr>
<td>TriSTAR Electronics Inc</td>
<td>134</td>
</tr>
<tr>
<td>TTE Inc.</td>
<td>239</td>
</tr>
<tr>
<td>Two Technologies</td>
<td>264</td>
</tr>
<tr>
<td>Unitrode Integrated</td>
<td>C3</td>
</tr>
<tr>
<td>Universal Cross Assemblers</td>
<td>266</td>
</tr>
<tr>
<td>Vamp Inc.</td>
<td>239</td>
</tr>
<tr>
<td>Vectron Laboratories Inc.</td>
<td>242</td>
</tr>
<tr>
<td>Vicoreen</td>
<td>264</td>
</tr>
<tr>
<td>WME Microsystems</td>
<td>259</td>
</tr>
<tr>
<td>Waveltron</td>
<td>266</td>
</tr>
<tr>
<td>Welch-Allyn</td>
<td>266</td>
</tr>
<tr>
<td>Westcor</td>
<td>6</td>
</tr>
<tr>
<td>White Technology</td>
<td>267</td>
</tr>
<tr>
<td>Wintek Corp.</td>
<td>268</td>
</tr>
<tr>
<td>WSI</td>
<td>261</td>
</tr>
<tr>
<td>Xicor Inc.</td>
<td>267</td>
</tr>
<tr>
<td>Xilinx</td>
<td>157-164</td>
</tr>
<tr>
<td>Ziatech Corporation</td>
<td>275</td>
</tr>
<tr>
<td>Z-World</td>
<td>263</td>
</tr>
</tbody>
</table>

**Recruitment Advertising 269-272**

E-Systems, ECI Div
Lear Astronics
Pulsecom
Raynet
Sencore
Symbol Technologies

This index is provided as an additional service. The publisher does not assume any liability for errors or omissions.
EDN REPRINTS

A Designer's Guide to Linear Circuits

Volume I
This original, 186-page collection by Jim Williams offers a wealth of analog design information. It includes practical and efficient ways to use op amps, comparators, data converters, and other analog ICs.

A Designer's Guide to Linear Circuits

Volume II

Surface-Mount Technology Design Project
This 48-page, four-color reprint follows the progress of EDN editor Steve Leibson as he designs a 2M-byte memory board using surface-mount technology. He includes typical problems you might encounter and objectively reports about both good and bad design decisions made along the way.

FREE DOS-installable driver included with Ziatech's PC/AT and PS/2 interfaces.

IEEE 488 interfaces for PC/AT, PS/2, STD Bus and MULTIBUS
- Popular language support built in
- Discount pricing for OEM purchases

FREE BROCHURE
805/541-0488

CALL NOW!
Cahners Reprint Services
708/390-2777

EDN-ACRONYMS & ABBREVIATIONS

A/D—analog to digital
AM—amplitude modulation
CGA—color graphics adapter
CMOS—complementary metal-oxide semiconductor
D/A—digital to analog
DOS—disk operating system
DSP—digital signal processing
DSTN—double-supertwist nematic, a type of liquid-crystal display
EGA—enhanced graphics adapter
EMF—electromotive force
FET—field-effect transistor
FFT—fast Fourier transform
FIR—finite-impulse-response
FM—frequency modulation
FPGA—field-programmable gate array
FSK—frequency shift keying
FSTN—film-supertwist nematic, a type of liquid-crystal display
IC—integrated circuit
LCD—liquid-crystal display
LO—local oscillator
MFLOPS—million floating-point operations per second
MS-DOS—Microsoft disk operating system
MSI—medium-scale integration
MSTN—monochrome-supertwist nematic, a type of liquid-crystal display
MTBF—mean time between failures
OS—operating system
PALC—plasma-addressed liquid crystal, a type of liquid-crystal display that uses plasma to switch pixels on and off
PC—personal computer
PID—proportional-integral-derivative
PLL—phase-locked loop
PWM—pulse-width modulation
RAM—random-access memory
RF—radio frequency
RFI—radio-frequency interference
RISC—reduced-instruction-set computer
rms—root mean square
rpm—revolutions per minute
SI—International System of Units
Spice—Simulation Program with Integrated Circuit Emphasis, a public-domain analog-circuit simulator from UC Berkeley
SSI—small-scale integration
STN—supertwist nematic, a type of liquid-crystal display
TAB—tape automated bonding
TFT—thin-film transistor, the transistor type used by active-matrix liquid-crystal displays
TN—twisted nematic, the basic type of liquid-crystal display
TTL—transistor-transistor logic
VCO—voltage-controlled oscillator
VGA—Video Graphics Array, a resolution standard for displays

This list includes acronyms and abbreviations found in EDN's Special Report, Technology Updates, and feature articles.

EDN April 23, 1992 • 275
Design in our fully static V20HL or V30HL microprocessor and you'll **Run rings around the competition.**

**Sparkling performance for handheld devices.**
Our 16MHz V20HL and V30HL microprocessors run 60% faster than 10 MHz 80C88 and 80C86 devices.

But the V20HL/30HL give you more than just a faster clock. You'll blaze through multiply/divide operations in half the time, even if you choose to set the V20HL/30HL at the same clock rate as the 80C88/80C86.

**Smaller. Lighter. Faster. Better.**
Lower power consumption and 3-volt operation mean your design will weigh less and take up less space. And later, you can shrink even the smallest design by converting to NEC's DOS Engine (PC-on-a-chip) or application-specific standard product based on V20HL/30HL cpu core.

That's why Hewlett-Packard engineers chose our V20HL microprocessor as the heart of the amazing new 11 ounce HP 95LX "palmtop" PC, which runs Lotus 1-2-3 on just two AA batteries.

**Free Information Fast. Ask for Info Pack 155.**
Call 1-800-632-3531. FAX 1-800-729-9288.
Tape backup software provides speedy, easy-to-use disk insurance

I appreciate software with a sense of humor and was amused by my first error message from Novaback, a general-purpose tape-backup PC software package for SCSI-based tape units. When I tried to install the software from the E: 3½-in. floppy-disk drive in EDN's 80486-based All-Star PC (see EDN, March 15, 1990, pg 142), the installation program couldn't find its files and asked me, 'How would you like to solve this little problem?' With that one exception, I had no problems at all with this software. In fact, I completed the installation, configured the software, and backed up more than 100 Mbytes from my hard disk by the time I reached page 3 of the manual.

Novaback knows how to operate a large number of SCSI-based tape drives including units from Archive/Viper, Caliper/Sankyo, Cipher, Exabyte, Fujitsu, Hewlett-Packard, Kennedy, LMSI, Sony, Storagetek, Tandberg, Teac, Wangdat, and Wangtek. That repertoire includes ¼- and ½-in.-cartridge tape units, 4-mm DAT (digital-audio-tape) drives, 8-mm-cartridge tape drives, and even some 9-track reel-to-reel behemoths. The software works with the Always Technology IN-2000 or Adaptec's 1540 or 1640 SCSI host adapters for the PC. Because of its ability to control many different drives, this software is an excellent choice for companies configuring many types of PCs using several different tape formats. Your customers can learn and use just one software package, which should reduce your support headaches.

Backing up a hard disk to tape is like taking out an insurance policy, and you want the job done quickly and efficiently. That's how Novaback performs. You can operate the menu-driven program from the keyboard or with a mouse. EDN's All-Star PC incorporates an Exabyte EXB8200, which can store 2.5 Gbytes on one 8-mm videotape cartridge; I use the program to save the contents of my entire hard disk to tape every time. The speed is truly phenomenal. Although the All-Star PC has more than 1 Gbyte of disk storage, it currently contains "only" about 135 Mbytes of programs and data. Novaback and the Exabyte drive sock this pile of data away in less than 20 minutes.

For slower tape drives, you may want to save time by performing incremental backups, and Novaback allows you to do that. A configuration menu gives you the option to selectively back up read-only, hidden, and system files; subdirectories; and files modified since the last backup. You can also designate selected files to back up, and the software can also save trustee rights for directories residing on a Novell file server. An installable device driver included with the package lets you schedule automatic backups.

Support service sets the standard for all to meet

Once or twice a year, I experience a “paradigm shift”: something absolutely stuns me and changes the way I view the industry. It happened recently.

I needed a new device driver so that the NEC Multisync Graphics Engine display card in EDN's All-Star PC could work with Microsoft Windows 3.0. About the same time, NEC Technologies started running some advertisements that included a fax technical support service number ((800) 366-0476). I tried using this service to solve my problem. Things will never be the same.

When I called NEC's Fast Facts line, a machine answered. However, this was no ordinary answering machine or phone mail system. Using a recorded message, the Fast Facts line told me that it could transmit several documents by fax and offered me the choice of ordering individual documents by number or a catalog of available documents. Because I didn't know any

EDN April 23, 1992 • 277
document numbers, I requested the catalog by pressing one button on my telephone's keypad. Then, the Fast Facts machine asked me to key in my own fax number, which I did. Within five minutes, my machine produced a 7-pg catalog from NEC. Less than five minutes later, I had selected, ordered, and received two installation guides, two application notes giving me customization information for flicker-free display modes, and a troubleshooting guide. I also had the phone number for a computer bulletin board where I could find the drivers I wanted and a number for a voice line for technical support, which I haven't needed.

In less than 10 minutes, I had obtained a wealth of new information and the location of the drivers I sought. Contrast this chain of events with your last technical support experience and perhaps you'll be struck, as I was, by the boost in support that this technology provides. I called NEC Technologies to find out more about the technology used. Surprisingly, it's off-the-shelf, commercial technology that's readily available from Faxback Inc (Beaverton, OR, (800) 873-8753, demo line (503) 690-6390).

NEC Technologies installed its system about a year ago but use of the service has only recently taken off because of the company's advertising campaign. The fax-based support service carries information about the company's display products, CD-ROM drives, desktop and laptop PCs, printers, hard disks, video cards, and professional video equipment. The service logged 12,000 calls last December, which represents 12,000 customers who received product and support information in minutes without speaking to an NEC employee or representative. This service sets a new standard for customer support, and I believe that companies must either adopt this style of support or they will simply cease to be competitive.

—Steven H Leibson

Learning the gentle art of effective delegation

OK, so now you’re a manager. You’re going to have to delegate tasks you formerly did yourself. The problem is, you know you’re the best person for every job you’re supposed to delegate.

If that scenario isn’t familiar, perhaps you’re not comfortable with the thought of abandoning the technical side of the business. Maybe you’re just uncomfortable taking responsibility for the people who work for you. If you find yourself in one of these situations, How to delegate effectively is the book for you.

In its scant 49 pages, this booklet discusses just about everything a new manager needs to know. Even experienced managers should find useful information here. Author Weiss’ style is very readable. He often employs fictional characters in short skits to illustrate his points. For example, to flesh out a section covering the correct way to handle an employee’s reluctance to assume new responsibilities, Weiss allows his mythical manager, Roxanne, to converse with Val, another character in the book. These conversations are terrific—they move the book’s discussion away from the abstract and give you some real words that you’ll feel comfortable using.

The book’s seven chapters span delegation from its roots (your objectives and those of your work unit) to checks and balances (making sure the work is done and done well). This book proves that managerial training books can be brief, interesting, and informative. It’s part of the publisher’s Successful Office Skills series and costs $4.

—Steven H Leibson

How to delegate effectively by Donald H Weiss. American Management Association, 135 W 50th St, New York, NY 10020. Phone (212) 586-8100.
Our new BICMOS UCC3802 family of super-efficient current mode PWM's are small, fast, and accurate. No other PWM offers a lower voltage input (5 volts operational), so why bootstrap around your old IC's limitations?

You can fly - with minimal design-in effort. The UCC3802 is excellent for portable equipment: modems, notebook computers, and other battery-operated equipment are just a few of the applications the UCC3802 makes smarter.

For free samples and application information, give us a call today:

(603) 424-2410
7 Continental Boulevard, Merrimack, NH 03054, FX, (603)424-3460

The UCC3802 Family Advantage
- Low Starting Supply Current: typically 50μA
- Low Operating Supply Current: typically 350μA
- Pinout Compatible with UC3842 and UC3842A families
- 1MHz @ Operation
- Internal Leading Edge Blanking
- High-Current 1Apk Totem-Pole Output
- Fast Response Current-Sense Response: typically 100ns
- Restart Delay prevents Fast Soft-Start Oscillations
- Current-Mode Control for Automatic Feedforward Compensation
- Tight tolerance voltage reference ±1%

"THE CURRENT MODE PWM LEADER"
Since 1976, Belden has worked with some of the largest companies in the world to help them integrate fiber optic technology into their product designs, premise communications and data transmission networks.

Today, you can use Belden® fiber optic cable as backbone highways for multiple LANs; direct connections to workstations, mainframes and supercomputers; and as ideal interconnects for real-time response and graphic intensive systems.

All Belden® fiber optic cables meet Fiber Distributed Data Interface (FDDI) standard specifications for high speed transmissions...the only fiber network standard to progress to industry-wide product development and in-stock availability.

Belden® networking cables for FDDI include loose and tight buffered cables for outdoor and indoor applications. All indoor premise cables are NEC rated. Connectorized assemblies are also available.

These are the basic fiber optic products in our catalog, but if you have an unusual application or requirement, you can once again count on Belden. Our new 69,000 square foot Belden Engineering Center can help you develop products and systems that meet whatever design requirements you might have.

This state-of-the-art facility is dedicated to keeping our OEM customers on the leading edge of technology, with product sample development, test and analysis, process and equipment testing and development, and compound materials testing and development.

So if you've been concerned about who's going to help you meet your company's future needs for fiber optic products and technology, stop worrying and give us a call. At Belden the future is now.

For more information and a free copy of our new Fiber Optic Catalog, call:

1-800-BELDEN-4

Cooper Industries,
Belden Division
P.O. Box 1980
Richmond, IN 47375

NEC® is a registered trademark of the National Fire Protection Association, Inc. Quincy, MA.